Undeveloped till soils in scree areas are an overlooked important phosphorus source for waters in alpine catchments
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37679451
PubMed Central
PMC10485049
DOI
10.1038/s41598-023-42013-4
PII: 10.1038/s41598-023-42013-4
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- cyklistika * MeSH
- fosfor MeSH
- půda MeSH
- uhlík * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfor MeSH
- půda MeSH
- uhlík * MeSH
Scree deposits in alpine catchments contain undeveloped till soils that are "hidden" between and under stones. These scree areas have no vegetation except for sparse lichen patches on stone surfaces, but the soils exhibit biological activity and active cycling of nitrogen (N), phosphorus (P), and organic carbon (C). We compared the chemical and biochemical properties of till soils in the scree areas (scree soils) with developed soils in alpine meadows (meadow soils) of 14 catchments in the alpine zone of the Tatra Mountains. The data showed that scree soils served as an important source of mobile P forms for waters in high elevation catchments. We then conducted a detailed soil survey focused on four selected alpine catchments with scree cover proportions > 30%. This study confirmed that scree soils have significantly higher concentrations of mobile P forms compared to meadow soils, and a high specific microbial activity directed towards the extraction of P with rapid turnover in the microbial biomass. The combination of these properties and the amounts of scree soils in high-elevation areas highlight their importance in overall biogeochemical P cycling in alpine catchments, and the terrestrial P export to receiving waters.
Zobrazit více v PubMed
Kopáček J, et al. Catchment biogeochemistry modifies long-term effects of acidic deposition on chemistry of mountain lakes. Biogeochemistry. 2015;125:315–335. doi: 10.1007/s10533-015-0127-y. DOI
Stuchlík E, Kopáček J, Fott J, Hořická Z. Chemical composition of the Tatra mountain lakes: Response to acidification. Biologia. 2006;61:S21–S33. doi: 10.2478/s11756-006-0116-7. DOI
Stuchlík E, et al. Complexity in the biological recovery of Tatra Mountain lakes from acidification. Water Air Soil Pollut. 2017;228:184. doi: 10.1007/s11270-017-3362-0. DOI
Svitok M, Kubovčík V, Kopáček J, Bitušík P. Temporal trends and spatial patterns of chironomid communities in alpine lakes recovering from acidification under accelerating climate change. Freshw. Biol. 2021;66:2223–2239. doi: 10.1111/fwb.13827. DOI
Kopáček J, Kaňa J, Porcal P, Stuchlík E. Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments. Environ. Pollut. 2021;284:117522. doi: 10.1016/j.envpol.2021.117522. PubMed DOI
Camarero L, Catalan J. Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat. Commun. 2012;3:1118. doi: 10.1038/ncomms2125. PubMed DOI
Homyak PM, Sickman JO, Melack JM. Pools, transformations, and sources of P in high-elevation soils: Implications for nutrient transfer to Sierra Nevada lakes. Geoderma. 2014;217–218:65–73. doi: 10.1016/j.geoderma.2013.11.003. DOI
Stoddard JL, et al. Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States? Environ. Sci. Technol. 2016;50:3409–3415. doi: 10.1021/acs.est.5b05950. PubMed DOI
Scholz J, Brahney J. Evidence for multiple potential drivers of increased phosphorus in high-elevation lakes. Sci. Tot. Environ. 2022;825:153939. doi: 10.1016/j.scitotenv.2022.153939. PubMed DOI
Kopáček J, Hejzlar J, Kaňa J, Norton SA, Stuchlík E. Effects of acidic deposition on in-lake phosphorus availability: A lesson from lakes recovering from acidification. Environ. Sci. Technol. 2015;49:2895–2903. doi: 10.1021/es5058743. PubMed DOI
Kopáček J, et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ. Sci. Technol. 2017;51:159–166. doi: 10.1021/acs.est.6b03575. PubMed DOI
Kopáček J, et al. Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations. Aquat. Sci. 2019;81:70. doi: 10.1007/s00027-019-0667-7. DOI
Kaštovská E, et al. Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study. PLoS ONE. 2022;17(8):e0272143. doi: 10.1371/journal.pone.0272143. PubMed DOI PMC
Kopáček J, Kaňa J, Šantrůčková H, Picek T, Stuchlík E. Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water Air Soil Pollut. 2004;153:307–327. doi: 10.1023/B:WATE.0000019948.23456.14. DOI
Kopáček J, Hejzlar J, Vrba J, Stuchlík E. Phosphorus loading of mountain lakes: Terrestrial export and atmospheric deposition. Limnol. Oceanogr. 2011;56:1343–1354. doi: 10.4319/lo.2011.56.4.1343. DOI
Jones CA, Cole CV, Sharpley AN, Williams JR. A simplified soil and plant phosphorus model: I. Documentation. Soil Sci. Soc. Am. J. 1984;48:800–805. doi: 10.2136/sssaj1984.03615995004800040020x. DOI
Manzoni S, Trofymow JA, Jackson JB, Porporato A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 2010;80:89–10. doi: 10.1890/09-0179.1. DOI
Čapek P, et al. Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. Geoderma. 2021;385:114884. doi: 10.1016/j.geoderma.2020.114884. DOI
Nemčok, J. et al. Explanation of the Geological Map of the Tatra Mountains. Geologický Ústav Dionýza Štúra, Bratislava (In Slovak) (1993).
Williams MW, Davinroy T, Brooks PD. Organic and inorganic nitrogen pools in talus fields and subtalus water, Green Lakes Valley, Colorado Front Range. Hydrol. Process. 1997;11:1747–1760. doi: 10.1002/(SICI)1099-1085(19971030)11:13<1747::AID-HYP603>3.0.CO;2-B. DOI
Kopáček J, Borovec J, Hejzlar J, Porcal P. Spectrophotometric determination of iron, aluminum, and phosphorus in soil and sediment extracts after their nitric and perchloric acid digestion. Commun. Soil Sci. Plant Anal. 2001;32:1431–1443. doi: 10.1081/CSS-100104203. DOI
Cappo KA, Blume LJ, Raab GA, Bartz JK, Engels JL. Analytical Methods Manual for the Direct/Delayed Response Project Soil Survey, Sections 8–11. USEPA; 1987.
Wolf AM, Baker DE. Colorimetric method for phosphorus measurement in ammonium oxalate soil extracts. Commun. Soil Sci. Plant Anal. 1990;21:2257–2263. doi: 10.1080/00103629009368378. DOI
Olsen, S.R., Sommers, L.E. 1982. Phosphorus. In: Page A.L., et al. (eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. (Agron. Mongr. 9. 2nd edn. (ASA and SSSA, Madison) 403–430.
Thomas GW, et al. Exchangeable cations. In: Page AL, et al., editors. Methods of Soil Analysis, Part 2. 2. ASA and SSSA; 1982. pp. 159–166.
Brookes PC, Powlson DS, Jenkinson DS. Measurement of microbial phosphorus in soil. Soil Biol. Biochem. 1982;14(4):319–329. doi: 10.1016/0038-0717(82)90001-3. DOI
Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil –nitrogen—A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985;17(6):837–842. doi: 10.1016/0038-0717(85)90144-0. DOI
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19(6):703–707. doi: 10.1016/0038-0717(87)90052-6. DOI
Šantrůčková H, Straškaraba M. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 1991;23:525–532. doi: 10.1016/0038-0717(91)90109-W. DOI
Marx MC, Wood M, Jarvis SC. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001;33:1633–1640. doi: 10.1016/S0038-0717(01)00079-7. DOI
Burns RG, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013;58:216–234. doi: 10.1016/j.soilbio.2012.11.009. DOI
Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature. 2009;462:95–798. doi: 10.1038/nature08632. PubMed DOI
Jones DL, Hinsinger P. The rhizosphere: Complex by design. Plant Soil. 2008;312(1):1–6. doi: 10.1007/s11104-008-9774-2. DOI
Banfield JF, Barker WW, Welch SA, Taunton A. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. U. S. A. 1999;96(7):3404–3411. doi: 10.1073/pnas.96.7.3404. PubMed DOI PMC
Richter D, Ohjg NH, Fimmen R, Jackson J. CHAPTER 8—the rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL, editors. The Rhizosphere. Academic Press; 2007. pp. 179–200.
Wu S, et al. Rhizosphere drives biotite-like mineral weathering and secondary Fe–Si mineral formation in Fe ore tailings. ACS Earth Sp. Chem. 2021;5(3):618–631. doi: 10.1021/acsearthspacechem.0c00331. DOI
Kaňa J, Kopáček J, Camarero L, Garcia-Pausas J. Phosphate sorption characteristics of European Alpine soils. Soil Sci. Soc. Am. J. 2011;75:862–870. doi: 10.2136/sssaj2010.0259. DOI
Alexander, K., Hartnett, H., Anbar, A., Beraldi, H., Garcia-Pichel, F. Isotopic Composition of Organic and Inorganic Carbon in Desert Biological Soil Crust Systems. In: AGU Fall Meeting Abstracts. 2006. P. B13C-1116 (2006).
Wada E, et al. Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankton Benthos Res. 2012;7(3):135–145. doi: 10.3800/pbr.7.135. DOI
Ley RE, Williams MW, Schmidt SK. Microbial population dynamics in an extreme environment: Controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry. 2004;68:297–311. doi: 10.1023/B:BIOG.0000031032.58611.d0. DOI
Kotas P, Šantrůčková H, Elster J, Kaštovská E. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard) Biogeosciences. 2018;15:1879–1894. doi: 10.5194/bg-15-1879-2018. DOI
do Carmo Horta M, Torrent J. The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils. Nutr. Cycl. Agroecosyst. 2007;77:283–292. doi: 10.1007/s10705-006-9066-2. DOI