Soil warming during winter period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35917373
PubMed Central
PMC9345486
DOI
10.1371/journal.pone.0272143
PII: PONE-D-22-06781
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- klimatické změny MeSH
- pastviny * MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- roční období MeSH
- rostliny MeSH
- sníh MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH
Alpine meadows are strongly affected by climate change. Increasing air temperature prolongs the growing season and together with changing precipitation patterns alters soil temperature during winter. To estimate the effect of climate change on soil nutrient cycling, we conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two wind-exposed alpine meadows at ~2100 m a.s.l. to more sheltered plots, situated ~300-400 m lower in the same valleys. The annual mean air temperature was 2°C higher at the lower plots and soils that were normally frozen at the original plots throughout winters were warmed to ~0°C due to the insulation provided by continuous snow cover. After two years of exposure, we analyzed the nutrient content in plants, and changes in soil bacterial community, decomposition, mineralization, and nutrient availability. Leaching of N and P from the soils was continuously measured using ion-exchange resin traps. Warming of soils to ~0°C during the winter allowed the microorganisms to remain active, their metabolic processes were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced by increased soil N and P availability, their higher levels in plants, and elevated leaching. In addition, root exudation and preferential enzymatic mining of P over C increased. However, any significant changes in microbial biomass, bacterial community composition, decomposition rates, and mineralization during the growing season were not observed, suggesting considerable structural and functional resilience of the microbial community. In summary, our data suggest that changes in soil temperature and snow cover duration during winter periods are critical for altering microbially-mediated processes (even at unchanged soil microbial community and biomass) and may enhance nutrient availability in alpine meadows. Consequently, ongoing climate change, which leads to soil warming and decreasing snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine meadows compared to the current situation and increase the year-on-year variability in nutrient availability and leaching.
Zobrazit více v PubMed
Pelto MS. Impact of climate change on north cascade alpine glaciers, and alpine runoff. Northwest Science. 2008;82(1):65–75.
Diolaiuti GA, Maragno D, D’Agata C, Smiraglia C, Bocchiola D. Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosde Piazzi glaciers (Lombardy Alps, Italy). Progress in Physical Geography. 2011;35(2):161–82.
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42. doi: 10.1038/nature01286 PubMed DOI
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(6918):57–60. doi: 10.1038/nature01333 PubMed DOI
Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC. Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Functional Ecology. 2009;23(4):680–8.
Aerts R, Cornelissen JHC, Dorrepaal E. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology. 2006;182(1–2):65–77.
Wahren CHA, Walker MD, Bret-Harte MS. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Global Change Biology. 2005;11(4):537–52.
Pederson GT, Gray ST, Woodhouse CA, Betancourt JL, Fagre DB, Littell JS, et al.. The unusual nature of recent snowpack declines in the North American Cordillera. Science. 2011;333(6040):332–5. doi: 10.1126/science.1201570 PubMed DOI
Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, et al.. Ecological dynamics across the Arctic associated with recent climate change. Science. 2009;325(5946):1355–8. doi: 10.1126/science.1173113 PubMed DOI
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press; 2021.
Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, et al.. Elevation-dependent warming in mountain regions of the world. Nature Climate Change. 2015;5(5):424–30.
Wang Q, Fan X, Wang M. Evidence of high-elevation amplification versus Arctic amplification. Scientific Reports. 2016;6:19219. doi: 10.1038/srep19219 PubMed DOI PMC
Nogues-Bravo D, Araujo MB, Errea MP, Martinez-Rica JP. Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions. 2007;17(3–4):420–8.
Rammig A, Jonas T, Zimmermann NE, Rixen C. Changes in alpine plant growth under future climate conditions. Biogeosciences. 2010;7(6):2013–24.
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, et al.. Continent-wide response of mountain vegetation to climate change. Nature Climate Change. 2012;2(2):111–5.
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, et al.. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126(4):543–62. doi: 10.1007/s004420000544 PubMed DOI
Kudernatsch T, Fischer A, Bernhardt-Romermann M, Abs C. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic and Applied Ecology. 2008;9(3):263–74.
Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist. 2013;199(2):441–51. doi: 10.1111/nph.12252 PubMed DOI
Bond-Lamberty B, Bolton H, Fansler S, Heredia-Langner A, Liu CX, McCue LA, et al.. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment. PLoS One. 2016;11(3). doi: 10.1371/journal.pone.0150599 PubMed DOI PMC
Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. Tree and forest functioning in response to global warming. New Phytologist. 2001;149(3):369–99. doi: 10.1046/j.1469-8137.2001.00057.x PubMed DOI
Hobbie SE. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs. 1996;66(4):503–22.
Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA. EFFECTS OF TEMPERATURE AND SUBSTRATE QUALITY ON ELEMENT MINERALIZATION IN 6 ARCTIC SOILS. Ecology. 1991;72(1):242–53.
Peng F, Xue X, You Q, Xu M, Chen X, Guo J, et al.. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem. Ecology and Evolution. 2016;6(23):8546–55. doi: 10.1002/ece3.2583 PubMed DOI PMC
Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Gasche R, et al.. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Global Change Biology. 2016;22(9):2963–78. doi: 10.1111/gcb.13353 PubMed DOI
Puissant J, Cecillon L, Mills RTE, Robroek BJM, Gavazov K, De Danieli S, et al.. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biology & Biochemistry. 2015;80:296–305.
Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, et al.. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. Isme J. 2015;9(12):2561–72. doi: 10.1038/ismej.2015.78 PubMed DOI PMC
Jing X, Wang YH, Chung HG, Mi ZR, Wang SP, Zeng H, et al.. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry. 2014;117(1):39–54.
Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, et al.. Global warming and terrestrial ecosystems: A conceptual framework for analysis. Bioscience. 2000;50(10):871–82.
Blume-Werry G, Wilson SD, Kreyling J, Milbau A. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytologist. 2016;209(3):978–86. doi: 10.1111/nph.13655 PubMed DOI
Puissant J, Cecillon L, Mills RTE, Robroek BJM, Gavazov K, De Danieli S, et al.. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biology & Biochemistry. 2015;80:296–305.
Lazzaro A, Hilfiker D, Zeyer J. Structures of microbial communities in Alpine Soils: Seasonal and elevational effects. Frontiers in Microbiology. 2015;6. PubMed PMC
Lipson DA, Schmidt SK. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied and Environmental Microbiology. 2004;70(5):2867–79. doi: 10.1128/AEM.70.5.2867-2879.2004 PubMed DOI PMC
Rankinen K, Karvonen T, Butterfield D. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing. Hydrol Earth Syst Sci. 2004;8(4):706–16.
Zhang Y, Wang S, Barr AG, Black TA. Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Science and Technology. 2008;52(3):355–70.
Gavazov K, Ingrisch J, Hasibeder R, Mills RTE, Buttler A, Gleixner G, et al.. Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function. Sci Total Environ. 2017;590–591:316–24. doi: 10.1016/j.scitotenv.2017.03.010 PubMed DOI
Broadbent AAD, Snell HSK, Michas A, Pritchard WJ, Newbold L, Cordero I, et al.. Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt. The ISME Journal. 2021. doi: 10.1038/s41396-021-00922-0 PubMed DOI PMC
Schimel JP, Bilbrough C, Welker JM. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry. 2004;36(2):217–27.
Kaste Ø, Austnes K, Vestgarden LS, Wright RF. Manipulation of Snow in Small Headwater Catchments at Storgama, Norway: Effects on Leaching of Inorganic Nitrogen. AMBIO: A Journal of the Human Environment. 2008;37(1):29–37, 9. PubMed
Bokhorst SF, Bjerke JW, Tømmervik H, Callaghan TV, Phoenix GK. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology. 2009;97(6):1408–15.
Wipf S, Rixen C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research. 2010;29(1):95–109.
Wipf S, Sommerkorn M, Stutter MI, Wubs ERJ, van der Wal R. Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem. Ecosphere. 2015;6(10):art207.
Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, et al.. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology. 2007;88(6):1379–85. doi: 10.1890/06-0164 PubMed DOI
Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry. 2013;116(1):69–82.
Beniston M. Is snow in the Alps receding or disappearing? WIREs Climate Change. 2012;3(4):349–58.
Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010;24(17):2465–80.
Debouk H, de Bello F, Sebastia MT. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS One. 2015;10(10). doi: 10.1371/journal.pone.0141899 PubMed DOI PMC
Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Boulanger-Lapointe N, Cooper EJ, et al.. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change. 2012;2(6):453–7.
Bender E, Lehning M, Fiddes J. Changes in climatology, snow cover, and ground temperatures at high alpine locations. Frontiers in Earth Science. 2020;8(100).
Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia. 2012;170(3):809–19. doi: 10.1007/s00442-012-2330-z PubMed DOI PMC
Parker TC, Sanderman J, Holden RD, Blume-Werry G, Sjögersten S, Large D, et al.. Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline. Ecology. 2018;99(10):2284–94. doi: 10.1002/ecy.2442 PubMed DOI PMC
Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology. 2010;76(4):999–1007. doi: 10.1128/AEM.02874-09 PubMed DOI PMC
Kopacek J, Kana J, Bicarova S, Fernandez IJ, Hejzlar J, Kahounova M, et al.. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environmental Science & Technology. 2017;51(1):159–66. doi: 10.1021/acs.est.6b03575 PubMed DOI
Kopacek J, Kana J, Porcal P, Stuchlik E. Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments. Environmental Pollution. 2021;284. doi: 10.1016/j.envpol.2021.117522 PubMed DOI
Svitok M, Kubovčík V, Kopáček J, Bitušík P. Temporal trends and spatial patterns of chironomid communities in alpine lakes recovering from acidification under accelerating climate change. Freshwater Biology. 2021;n/a(n/a).
McLaren JR, Buckeridge KM. Enhanced plant leaf P and unchanged soil P stocks after a quarter century of warming in the arctic tundra. Ecosphere. 2021;12(11):e03838.
Kopáček J, Kaňa J, Šantrůčková H, Picek T, Stuchlík E. Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water, Air, and Soil Pollution. 2004;153(1):307–28.
Tahovska K, Kopacek J, Santruckova H. Nitrogen availability in Norway spruce forest floor—the effect of forest defoliation induced by bark beetle infestation. Boreal Environment Research. 2010;15(6):553–64.
Tahovska K, Capek P, Santruckova H, Kana J, Kopacek J. Measurement of in situ phosphorus availability in acidified soils using iron-infused resin. Communications in Soil Science and Plant Analysis. 2016;47(4):487–94.
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. 1962;27:31–6.
Kopáček J, Hejzlar J. Semi-micro determination of total phosphorus in soils, sediments and organic materials–a simplified perchloric-acid digestion procedure. Communications in Soil Science and Plant Analysis. 1995;26(11–12):1935–46.
Thomas GW. Exchangeable Cations. Methods of Soil Analysis 1983. p. 159–65.
Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil -nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry. 1985;17(6):837–42.
Brookes PC, Powlson DS, Jenkinson DS. Measurement of microbial phosphorus in soil. Soil Biology & Biochemistry. 1982;14(4):319–29.
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass-C. Soil Biology & Biochemistry. 1987;19(6):703–7.
Barta J, Slajsova P, Tahovska K, Picek T, Santruckova H. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry. 2014;117(2–3):525–37.
German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology & Biochemistry. 2011;43(7):1387–97.
Sinsabaugh RL, Hill BH, Shah JJF. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature. 2009;462(7274):795–8. doi: 10.1038/nature08632 PubMed DOI
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al.. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences. 2011;108(Supplement 1):4516–22. PubMed PMC
Tahovská K, Choma M, Kaštovská E, Oulehle F, Bárta J, Šantrůčková H, et al.. Positive response of soil microbes to long-term nitrogen input in spruce forest: Results from Gårdsjön whole-catchment N-addition experiment. Soil Biology and Biochemistry. 2020;143:107732.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461 PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al.. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al.. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. doi: 10.1093/nar/gks1219 PubMed DOI PMC
McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLOS Computational Biology. 2014;10(4):e1003531. doi: 10.1371/journal.pcbi.1003531 PubMed DOI PMC
Magurran AE. Measuring Biological Diversity. Blackwell Publishing, Oxford; 2004. p. 256.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.. Vegan: Community Ecology Package. R package version 2.4–4 2019.
Lenth R, Singmann H, Love J, Buerkner P, Herve M. Estimated Marginal Means, aka Least-Squares Means. CRAN R 2019. 2019.
Grogan P, Michelsen A, Ambus P, Jonasson S. Freeze–thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry. 2004;36(4):641–54.
Andresen LC, Michelsen A. Off-season uptake of nitrogen in temperate heath vegetation. Oecologia. 2005;144(4):585–97. doi: 10.1007/s00442-005-0044-1 PubMed DOI
Riley WJ, Mekonnen ZA, Tang J, Zhu Q, Bouskill NJ, Grant RF. Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate. Environmental Research Letters. 2021;16(7):074047.
Yin H, Li Y, Xiao J, Xu Z, Cheng X, Liu Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology. 2013;19(7):2158–67. doi: 10.1111/gcb.12161 PubMed DOI
Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, et al.. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126(4):543–62. doi: 10.1007/s004420000544 PubMed DOI
Uselman S, Qualls R, Thomas R. Effects of increased atmospheric CO 2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil. 2000;222:191–202.
Henneron L, Cros C, Picon-Cochard C, Rahimian V, Fontaine S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. Journal of Ecology. 2020;108(2):528–45.
Cardenas J, Santa F, Kaštovská E. The exudation of surplus products links plant functional traits and plant-microbial stoichiometry. Land. 2021;10(8).
Henneron L, Kardol P, Wardle DA, Cros C, Fontaine S. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytologist. 2020;228(4):1269–82. doi: 10.1111/nph.16760 PubMed DOI
Hart SC. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Global Change Biology. 2006;12(6):1032–46.
Schimel JP, Bennett J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology. 2004;85(3):591–602.
Turner MM, Henry HAL. Net nitrogen mineralization and leaching in response to warming and nitrogen deposition in a temperate old field: the importance of winter temperature. Oecologia. 2010;162(1):227–36. doi: 10.1007/s00442-009-1435-5 PubMed DOI
Schuerings J, Jentsch A, Hammerl V, Lenz K, Henry HAL, Malyshev AV, et al.. Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms. Biogeosciences. 2014;11(23):7051–60.
Rinnan R, Michelsen A, Baath E, Jonasson S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology. 2007;13(1):28–39.
Rinnan R, Rousk J, Yergeau E, Kowalchuk GA, Baath E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Global Change Biology. 2009;15(11):2615–25.
Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cy. 2006;20(3).
Šantrůčková H, Tahovská K, Kopáček J. Nitrogen transformations and pools in N-saturated mountain spruce forest soils. Biology and Fertility of Soils. 2009;45(4):395–404.