Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming

. 2015 ; 10 (10) : e0141899. [epub] 20151029

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26513148

Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.

Zobrazit více v PubMed

Price M, Waser N. Responses of subalpine meadow vegetation to four years of experimental warming. Ecol Appl. 2000;10: 811–823. Available: http://www.esajournals.org/doi/abs/10.1890/1051-0761(2000)010%5B0811:ROSMVT%5D2.0.CO%3B2 DOI

Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994?2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Chang Biol. 2007;13: 147–156.

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, et al. Global biodiversity scenarios for the year 2100. Science. 2000;287: 1770–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/10710299 PubMed

Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, et al. Recent plant diversity changes on Europe’s mountain summits. Science. 2012;336: 353–5. 10.1126/science.1219033 PubMed DOI

Singh S, Haberl H, Schmid M. Long term socio-ecological research. Springer Sci + Bus Media Dordr. 2013; Available: http://onlinelibrary.wiley.com/doi/10.1002/9781119950981.ch1/summary DOI

Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 2001;126: 543–562. 10.1007/s004420000544 PubMed DOI

Sebastiá M, Mola B, Arenas J. Biomass responses of subalpine grasslands in the Pyrenees under warming conditions. Grassl Sci Eur. 2004;9: 290–292. Available: http://www.researchgate.net/publication/235771065_A_comparative_study_of_five_sown_grass-legume_mixtures_and_the_indigenous_vegetation_when_grown_on_a_rain-fed_mountain_area_of_Greece/file/9fcfd51366ea18d22b.pdf

Sebastià M-T. Plant guilds drive biomass response to global warming and water availability in subalpine grassland. J Appl Ecol. 2007;44: 158–167. 10.1111/j.1365-2664.2006.01232.x DOI

Lin D, Xia J, Wan S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 2010;188: 187–98. 10.1111/j.1469-8137.2010.03347.x PubMed DOI

Baldwin AH, Jensen K, Schönfeldt M. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Glob Chang Biol. 2014;20: 835–50. 10.1111/gcb.12378 PubMed DOI

Sebastià M- T, Kirwan L, Connolly J. Strong shifts in plant diversity and vegetation composition in grassland shortly after climatic change. J Veg Sci. 2008;19: 299–306. 10.3170/2008-8-18356 DOI

Epstein HE, Walker MD, Stuart Chapin F III, Starfield AM. A TRANSIENT, NUTRIENT-BASED MODEL OF ARCTIC PLANT COMMUNITY RESPONSE TO CLIMATIC WARMING. Ecol Appl. 2000;10: 824–841. Available: http://www.esajournals.org/doi/abs/10.1890/1051-0761(2000)010%5B0824:ATNBMO%5D2.0.CO;2 DOI

Shaver GR, Canadell J, Chapin FS III, Gurevitch J, Harte J, Henry G, et al. Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. Bioscience. 2000;50: 871–882. Available: http://www.nslc.wustl.edu/courses/archives/Bio4213/05/global_warming.pdf

Crick JC, Grime JP. Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytol. 1987;107: 403–414. PubMed

Endara M-J, Coley PD. The resource availability hypothesis revisited: a meta-analysis. Funct Ecol. 2011;25: 389–398. 10.1111/j.1365-2435.2010.01803.x DOI

Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, et al. The plant traits that drive ecosystems: evidence from three continents. J Veg Sci. 2004;15: 295–304. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2004.tb02266.x/abstract DOI

Aerts R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot. 1999;50: 29–37. Available: http://jxb.oxfordjournals.org/content/50/330/29.short

Grime JP. Competitive Exclusion in Herbaceous Vegetation. Nature. 1973;242: 344–347.

Pärtel M, Laanisto L, Zobel M. Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology. 2007;88: 1091–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/17536394 PubMed

MacArthur R. Fluctuations of animal populations, and a measure of community stability. Ecology. 1955;36: 533–536.

Elton CS. The ecology of invasions by animals and plants. London:Methuen; 1958.

Tilman D, Downing JA. Biodiversity and stability in grasslands. Nature. 1994;367: 363–365.

Palmer MW, Maurer T a. Does diversity beget diversity? A case study of crops and weeds. J Veg Sci. 1997;8: 235–240.

Goodman D. The Theory of Diversity-Stability Relationships in Ecology. Q Rev Biol. 1975;50: 237–266.

Lepš J, Osbornová-Kosinová J, Rejmánek M. Community stability, complexity and species life history strategies. Plant Ecol. 1982;50: 53–63.

Naeem S. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology. 2002;83: 1537–1552. Available: http://www.esajournals.org/doi/abs/10.1890/0012-9658(2002)083%5B1537:ECOBLT%5D2.0.CO%3B2 DOI

Huston M a. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia. 1997;110: 449–460. 10.1007/s004420050180 PubMed DOI

Lepš J, Brown V, Len D, Tomas A. Separating the chance effect from other diversity effects in the functioning of plant communities. Oikos. 2001;1: 123–134. Available: http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2001.920115.x/full DOI

Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector a, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001;294: 804–8. 10.1126/science.1064088 PubMed DOI

Hughes L. Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol. 2000;15: 56–61. Available: http://www.sciencedirect.com/science/article/pii/S0169534799017644 PubMed

Bassler G, Angeringer W. Change of plant species composition in mountainous meadows against the background of climate change and altered management. … L Manag …. 2011; 547–549. Available: http://www.egf2011.at/files/pubs/547_bassler.pdf

Carbognani M, Petraglia A, Tomaselli M. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant Soil. 2013;376: 277–290. 10.1007/s11104-013-1982-8 DOI

Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol. 2002;16: 545–556. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2435.2002.00664.x/full DOI

GECCC. El Canvi Climàtic a Catalunya. 2n Informe del Grup d’Experts en Canvi Climàtic de Catalunya. General Catalunya. 2010; 1–32.

López-Moreno J. Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol. 2008;1550: 1535–1550.

López-Moreno JI, Beniston M. Daily precipitation intensity projected for the 21st century: seasonal changes over the Pyrenees. Theor Appl Climatol. 2009;95: 375–384. 10.1007/s00704-008-0015-7 DOI

Finn J a., Kirwan L, Connolly J, Sebastià MT, Helgadottir A, Baadshaug OH, et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J Appl Ecol. 2013;50: 365–375. 10.1111/1365-2664.12041 DOI

Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, et al. ARTICLE Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun. Nature Publishing Group; 2015;6: 1–7. 10.1038/ncomms7936 PubMed DOI PMC

Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol. 2008;96: 1266–1274. 10.1111/j.1365-2745.2008.01430.x DOI

Klimešová J, Klimeš L. CLO-PLA: databáze architektury klonálního růstu rostlin střední Evropy (CLO-PLA: a database of clonal growth architecture of Central-European plants). Zpr Čes Bot Společ. 2005;20: 53–64.

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 2003;51: 335 10.1071/BT02124 DOI

de Bello F, Buchmann N, Casals P, Lepš J, Sebastià MT. Relating plant species and functional diversity to community δ13C in NE Spain pastures. Agric Ecosyst Environ. 2009;131: 303–307.

Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol. 2014;102: 45–53. 10.1111/1365-2745.12177 DOI

Gratani L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv Bot. 2014;2014: 17 10.1155/2014/208747 DOI

Ricotta C, Moretti M. Assessing the functional turnover of species assemblages with tailored dissimilarity matrices. Oikos. 2010;119: 1089–1098. 10.1111/j.1600-0706.2009.18202.x DOI

Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci U S A. 2007;104: 20684–9. 10.1073/pnas.0704716104 PubMed DOI PMC

De Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W. The partitioning of diversity: showing Theseus a way out of the labyrinth. J Veg Sci. 2010;21: 992–1000. 10.1111/j.1654-1103.2010.01195.x DOI

Jost L. Partitioning diversity into independent alpha and beta components. Ecology. 2007;88: 2427–2439. 10.1890/06-1736.1 PubMed DOI

Akaike H. Information theory and an extension of the maximum likelihood principle In: Petrov B. N. & Csáki F, editor. 2nd International Symposium on Information Theory. Tsahkadsor, Armenia: Akadémiai Kiadó; 1973. pp. 267–281.

Bray JR, Curtis JT. An ordination of upland forest communities of southern Wisconsin. Ecol Monograhs. 1957;27: 325–349.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: Community Ecology Package. R package version 2.0–7 [Internet]. 2013. Available: http://cran.r-project.org/package=vegan

R Core team. R: a language and environment for statistical computing [Internet] Vienna, Austria: R Foundation for Statistical Computing; 2013. Available: http://www.r-project.org/

Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111: 1169–1194.

Chapin FS. The mineral nutrition of wild plants. Annu Rev Ecol Syst. 1980;11: 233–260. Available: http://www.jstor.org/stable/2096908

Poorter H, De Jong R. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol. 1999;143: 163–176. 10.1046/j.1469-8137.1999.00428.x DOI

Schmidt IK, Jonasson S, Michelsen A. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol. 1999;11: 147–160. 10.1016/S0929-1393(98)00147-4 DOI

Weintraub MN, Schimel JP. Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils. Ecosystems. 2003;6: 129–143. 10.1007/s10021-002-0124-6 DOI

Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. European phenological response to climate change matches the warming pattern. Glob Chang Biol. 2006;12: 1969–1976. 10.1111/j.1365-2486.2006.01193.x DOI

Amano T, Smithers RJ, Sparks TH, Sutherland WJ. A 250-year index of first flowering dates and its response to temperature changes. Proc R Soc. 2010; 10.1098/rspb.2010.0291 PubMed DOI PMC

Wolkovich E, Cook B, Allen J. Warming experiments underpredict plant phenological responses to climate change. Nature. Nature Publishing Group; 2012; 18–21. 10.1038/nature11014 PubMed DOI

Cantarel A a. M, Bloor JMG, Soussana J-F. Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem Güsewell S, editor. J Veg Sci. 2013;24: 113–126. 10.1111/j.1654-1103.2012.01452.x DOI

Grime JP. Plant strategies, vegetation processes, and ecosystem properties. Wiley, second edition; 1979.

Chesson P. General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol. 2000;58: 211–37. 10.1006/tpbi.2000.1486 PubMed DOI

Zimdahl RL. Fundamentals of Weed Science. Academic Press; 2013.

Westoby M, Falster DS, Moles AT, Vesk P a., Wright IJ. PLANT ECOLOGICAL STRATEGIES: Some Leading Dimensions of Variation Between Species. Annu Rev Ecol Syst. 2002;33: 125–159.

de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol. 2011;2: 163–174. 10.1111/j.2041-210X.2010.00071.x DOI

Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol. 2008;14: 1125–1140. 10.1111/j.1365-2486.2008.01557.x DOI

Gause GF. The struggle for existence. Baltimore, M.D., U.S.A.: The Williams & Wilkins company; 1934.

Polley HW, Isbell FI, Wilsey BJ. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos. 2013;122: 1275–1282. 10.1111/j.1600-0706.2013.00338.x DOI

Májeková M, de Bello F, Doležal J, Lepš J. Plant functional traits as determinants of population stability. Ecology. 2014;95: 2369–2374. 10.1890/13-1880.1 DOI

Darwin C. On the Origin of Species. London: John Murray, Albemarle street; 1859.

Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 1996;379: 718–720. 10.1038/379718a0 DOI

Hector A, Schmid B, Beierkuhnlein C. Plant diversity and productivity experiments in European grasslands. Science (80-). 1999;286: 1123–1127. Available: http://www.sciencemag.org/content/286/5442/1123.short PubMed

Pfisterer A, Schmid B. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature. 2002;416: 84–86. Available: http://www.nature.com/nature/journal/v416/n6876/abs/416084a.html PubMed

Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. PNAS. 2007;104: 18123–18128. Available: http://www.pnas.org/content/104/46/18123.short PubMed PMC

Kirwan L, Lüscher a., Sebastià MT, Finn J a., Collins RP, Porqueddu C, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol. 2007;95: 530–539. 10.1111/j.1365-2745.2007.01225.x DOI

Falster DS, Westoby M. Plant height and evolutionary games. Trends Ecol Evol. 2003;18: 337–343.

Spehn EM, Joshi J, Schmid B, Diemer M, Körner C. Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol. 2000;14: 326–337.

MacGillivray CW, Grime JP, Team TISP (ISP). Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events. Funct Ecol. 1995;9: 640–649.

Körner C, Paulsen J. A world-wide study of high altitude treeline temperatures. J Biogeogr. 2004;31: 713–732. 10.1111/j.1365-2699.2003.01043.x DOI

Llebot JE. Informe sobre el canvi climàtic a Catalunya [Internet]. Barcelona, Spain; 2005. Available: http://canvi-climatic.espais.iec.cat/files/2013/07/inf_canvi_climatic_integra.pdf

de Bello F, Lepš J, Sebastià M- T. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol. 2005;42: 824–833. 10.1111/j.1365-2664.2005.01079.x DOI

de Bello F, Lepš J, Sebastià M. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography (Cop). 2006;6: 801–810. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.2006.0906-7590.04683.x/full DOI

de Bello F, Lepš J, Sebastià M-T. Grazing effects on the species-area relationship: Variation along a climatic gradient in NE Spain. J Veg Sci. 2007;18: 25 10.1658/1100-9233(2007)18[25:GEOTSR]2.0.CO;2 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...