Prediction of harvest-related traits in barley using high-throughput phenotyping data and machine learning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41164241
PubMed Central
PMC12560056
DOI
10.3389/fpls.2025.1686506
Knihovny.cz E-zdroje
- Klíčová slova
- barley and drought stress, high throughput phenotyping, machine learning, phenomic prediction, plant breeding,
- Publikační typ
- časopisecké články MeSH
Developing crop varieties that maintain productivity under drought is essential for future food security. Here, we investigated the potential of time-resolved high-throughput phenotyping to predict harvest-related traits and identify drought-stressed plants. Six barley lines (Hordeum vulgare) were grown in a greenhouse environment with well-watered and drought treatments, and dynamically phenotyped using RGB, thermal infrared, chlorophyll fluorescence, and hyperspectral imaging sensors. A temporal phenomic classification model accurately distinguished between drought-treated and control plants, achieving high accuracy (classification accuracy ≥0.97) even when relying solely on predictors from the early drought response phase. Canopy temperature depression at the early stage and RGB-derived plant size estimates at the late stage emerged as key classification features. A temporal phenomic prediction model of harvest-related traits achieved particularly high mean R2 values for total biomass dry weight (0.97) and total spike weight (0.93), with RGB plant size estimators emerging as important predictors. Importantly, prediction accuracy for these traits remained high (R2 ≥ 0.84) even when restricted to early developmental phase data, including the stem elongation stage. Models trained on pooled drought and control data outperformed single-treatment models and maintained high predictive power across treatments. Together, these findings highlight the value of integrating high-throughput phenotyping with temporal modeling to enable earlier, more cost-effective selection of drought-resilient genotypes and demonstrate the broader potential of phenomics-driven strategies for accelerating crop improvement under stress-prone environments.
Zobrazit více v PubMed
Abdelhakim L. O. A., Pleskačová B., Rodriguez-Granados N. Y., Sasidharan R., Perez-Borroto L. S., Sonnewald S., et al. (2024). High throughput image-based phenotyping for determining morphological and physiological responses to single and combined stresses in potato. JoVE 208, e66255. doi: 10.3791/66255, PMID: PubMed DOI
Adak A., Murray S. C., Anderson S. L. (2023). Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. G3: Genes Genomes Genet. 13 (1), jkac294. doi: 10.1093/g3journal/jkac294, PMID: PubMed DOI PMC
Al-Tamimi N., Langan P., Bernád V., Walsh J., Mangina E., Negrão S. (2022). Capturing crop adaptation to abiotic stress using image-based technologies. Open Biol. 12, 210353. doi: 10.1098/rsob.210353, PMID: PubMed DOI PMC
Anderson M. J. (2017). Permutational multivariate analysis of variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online, Balakrishnan N., Colton T., Everitt B., Piegorsch W., Ruggeri F., Teugels J. L., John Wiley & Sons, Ltd., Hoboken, NJ, 1–15. doi: 10.1002/9781118445112.stat07841 DOI
Biju S., Fuentes S., Gupta D. (2018). The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiol. Biochem. 127, 11–24. doi: 10.1016/j.plaphy.2018.03.005, PMID: PubMed DOI
Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., et al. (2020). Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.01159, PMID: PubMed DOI PMC
Chen D., Neumann K., Friedel S., Kilian B., Chen M., Altmann T., et al. (2014). Dissecting the phenotypic components of crop plant growthand drought responses based on high-throughput image analysis w open. Plant Cell 26, 4636–4655. doi: 10.1105/tpc.114.129601, PMID: PubMed DOI PMC
Cooper M., Messina C. D. (2023). Breeding crops for drought-Affected environments and improved climate resilience. Plant Cell 35 (1), 162–186. doi: 10.1093/plcell/koac321, PMID: PubMed DOI PMC
Debbagh M., Sun S., Lefsrud M. (2025). Predictive modeling, pattern recognition, and spatiotemporal representations of plant growth in simulated and controlled environments: A comprehensive review. Plant Phenomics 7 (3), 1–18. doi: 10.1016/j.plaphe.2025.100089 DOI
FAO (2023). Agricultural production statistics 2000–2022. FAOSTAT Analytical Briefs, No. 79. Rome: FAO. doi: 10.4060/cc9205en DOI
Farooq M., Wahid A., Zahra N., Hafeez M. B., Siddique K. H. M. (2024). Recent advances in plant drought tolerance. J. Plant Growth Regul. 43 (10), 3337–3369. doi: 10.1007/s00344-024-11351-6 DOI
Findurová H., Veselá B., Panzarová K., Pytela J., Trtílek M., Klem K. (2023). Phenotyping drought tolerance and yield performance of barley using a combination of imaging methods. Environ. Exp. Bot. 209, 105314. doi: 10.1016/J.ENVEXPBOT.2023.105314 DOI
Ghojogh B., Crowley M. (2023). The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial. ArXiv 1905, 12787. doi: 10.48550/arXiv.1905.12787 DOI
Gill T., Gill S. K., Saini D. K., Chopra Y., de Koff J. P., Sandhu K. S. (2022). A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2, 156–183. doi: 10.1007/s43657-022-00048-z, PMID: PubMed DOI PMC
Grömping U. (2009). Variable importance assessment in regression: linear regression versus random forest. Am. Statistician 63, 308–319. doi: 10.1198/tast.2009.08199 DOI
Heuermann M. C., Knoch D., Junker A., Altmann T. (2023). Natural plant growth and development achieved in the IPK PhenoSphere by dynamic environment simulation. Nat. Commun. 14 (1), 5783. doi: 10.1038/s41467-023-41332-4, PMID: PubMed DOI PMC
Hobby D., Tong H., Heuermann M., Mbebi A. J., Laitinen R. A. E., Dell’Acqua M., et al. (2025). Predicting plant trait dynamics from genetic markers. Nature. 11, 1018–1027. doi: 10.1038/s41477-025-01986-y, PMID: PubMed DOI PMC
HÜbner S., HÖffken M., Oren E., Haseneyer G., Stein N., Graner A., et al. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol. Ecol. 18, 1523–1536. doi: 10.1111/j.1365-294X.2009.04106.x, PMID: PubMed DOI
Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review. Plant Methods 11, 1–10. doi: 10.1186/s13007-015-0072-8, PMID: PubMed DOI PMC
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., et al. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi: 10.1017/9781009157896 DOI
Jarquin D., de Leon N., Romay C., Bohn M., Buckler E. S., Ciampitti I., et al. (2021). Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Front. Genet. 11. doi: 10.3389/fgene.2020.592769, PMID: PubMed DOI PMC
Khadka K., Earl H. J., Raizada M. N., Navabi A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Front. Plant Sci. 11). doi: 10.3389/fpls.2020.00715, PMID: PubMed DOI PMC
Langstroff A., Heuermann M. C., Stahl A., Junker A. (2022). Opportunities and limits of controlled-environment plant phenotyping for climate response traits. In Theor. Appl. Genet. 135, 1–16. doi: 10.1007/s00122-021-03892-1, PMID: PubMed DOI PMC
Lawson T., Blatt M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570. doi: 10.1104/pp.114.237107, PMID: PubMed DOI PMC
Leonelli S., Davey R. P., Arnaud E., Parry G., Bastow R. (2017). Data management and best practice for plant science. Nat. Plants 3 (6), 1–4. doi: 10.1038/nplants.2017.86, PMID: PubMed DOI
Li Z., Guo R., Li M., Chen Y., Li G. (2020). A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 176, 1–21. doi: 10.1016/j.compag.2020.105672 DOI
Mbebi A. J., Mercado F., Hobby D., Tong H., Nikoloski Z. (2025). Advances in multi-trait genomic prediction approaches: classification, comparative analysis, and perspectives. Briefings in Bioinformatics, 26 (3), 1–16. doi: 10.1093/bib/bbaf211, PMID: PubMed DOI PMC
Neumann K., Klukas C., Friedel S., Rischbeck P., Chen D., Entzian A., et al. (2015). Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant Cell Environ. 38, 1980–1996. doi: 10.1111/pce.12516, PMID: PubMed DOI
Newton A. C., Flavell A. J., George T. S., Leat P., Mullholland B., Ramsay L., et al. (2011). Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 3, 141–178. doi: 10.1007/s12571-011-0126-3 DOI
Pham A. T., Maurer A., Pillen K., Brien C., Dowling K., Berger B., et al. (2019). Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biol. 19 (1), 134. doi: 10.1186/s12870-019-1723-0, PMID: PubMed DOI PMC
Qiao M., Hong C., Jiao Y., Hou S., Gao H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13 (13), 1808. doi: 10.3390/plants13131808, PMID: PubMed DOI PMC
Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6, 619. doi: 10.3389/fpls.2015.00619, PMID: PubMed DOI PMC
Rayaprolu L., Jayasankar K., Aarts M. G. M., Harbinson J. (2025). Photosynthetic variation for climate-resilient crops: photosynthetic responses to fluctuating light and chilling in tomato. Physiol. Plantarum 177 (3), e70241. doi: 10.1111/ppl.70241, PMID: PubMed DOI PMC
Rosati A., Benincasa P. (2023). Revisiting source versus sink limitations of wheat yield during grain filling. Agron. J. 115, 3197–3205. doi: 10.1002/agj2.21454 DOI
Shi R., López-Malvar A., Knoch D., Tschiersch H., Heuermann M. C., Shaaf S., et al. (2025). Integrating high-throughput phenotyping and genome-wide association analyses to unravel Mediterranean maize resilience to combined drought and high temperatures. Plant Stress 17, 1–14. doi: 10.1016/j.stress.2025.100954 DOI
Shin Y. K., Bhandari S. R., Jo J. S., Song J. W., Lee J. G. (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 7 (8), 238. doi: 10.3390/horticulturae7080238 DOI
Singh A., Ganapathysubramanian B., Singh A. K., Sarkar S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21, 110–124. doi: 10.1016/j.tplants.2015.10.015, PMID: PubMed DOI
Singh A., Jones S., Ganapathysubramanian B., Sarkar S., Mueller D., Sandhu K., et al. (2021). Challenges and opportunities in machine-augmented plant stress phenotyping. Trends Plant Sci. 26, 53–69. doi: 10.1016/j.tplants.2020.07.010, PMID: PubMed DOI
Song P., Wang J., Guo X., Yang W., Zhao C. (2021). High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645. doi: 10.1016/j.cj.2021.03.015 DOI
Stekhoven D. J., Bühlmann P. (2011). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118. doi: 10.1093/bioinformatics/btr597, PMID: PubMed DOI
Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M. (2017). Plant phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783. doi: 10.1016/j.cub.2017.05.055, PMID: PubMed DOI
Varshney R. K., Barmukh R., Roorkiwal M., Qi Y., Kholova J., Tuberosa R., et al. (2021). Breeding custom-designed crops for improved drought adaptation. Adva. Genet. 2 (3), e202100017. doi: 10.1002/ggn2.202100017, PMID: PubMed DOI PMC
Vico G., Tang F. H. M., Brunsell N. A., Crews T. E., Katul G. G. (2023). Photosynthetic capacity, canopy size and rooting depth mediate response to heat and water stress of annual and perennial grain crops. Agric. For. Meteorol. 341, 109666. doi: 10.1016/J.AGRFORMET.2023.109666 DOI
Way D. A., Yamori W. (2014). Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis Res. 119, 89–100. doi: 10.1007/s11120-013-9873-7, PMID: PubMed DOI
Wen T., Li J. H., Wang Q., Gao Y. Y., Hao G. F., Song B. A. (2023). Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Sci. Total Environ. 899, 165626. doi: 10.1016/J.SCITOTENV.2023.165626, PMID: PubMed DOI
Xu R., Ferguson J. N., Kromdijk J., Nikoloski Z. (2025). Generalizability of machine learning models for plant traits using hyperspectral reflectance data: The case of maize. bioRxiv. 2025.07.03.661070, 1–49. doi: 10.1017/9781009157896 DOI
Xu Y., Zhang X., Li H., Zheng H., Zhang J., Olsen M. S., et al. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol. Plant 15, 1664–1695. doi: 10.1016/j.molp.2022.09.001, PMID: PubMed DOI
Yang W., Feng H., Zhang X., Zhang J., Doonan J. H., Batchelor W. D., et al. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187–214. doi: 10.1016/j.molp.2020.01.008, PMID: PubMed DOI
Ying X. (2019). An overview of overfitting and its solutions. J. Physics: Conf. Ser. 1168, 22022. doi: 10.1088/1742-6596/1168/2/022022 DOI
Zhang Z., Qu Y., Ma F., Lv Q., Zhu X., Guo G., et al. (2024). Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. New Phytol. 243, 1758–1775. doi: 10.1111/nph.19942, PMID: PubMed DOI
Zhou R., Kan X., Chen J., Hua H., Li Y., Ren J., et al. (2019). Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environ. Exp. Bot. 158, 51–62. doi: 10.1016/j.envexpbot.2018.11.005 DOI