Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34484254
PubMed Central
PMC8414894
DOI
10.3389/fpls.2021.670369
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant defense, crosstalk, homeostasis, omics approaches, plant growth regulators, salinity stress tolerance, signaling network,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Department of Agriculture Guru Nanak Dev University Amritsar India
Department of Agronomy Faculty of Agriculture University of Kafrelsheikh Kafr El Sheikh Egypt
Department of Biotechnology Centurion University of Technology and Management Bhubaneswar India
Department of Field Crops Faculty of Agriculture Siirt University Siirt Turkey
Department of Plant Physiology Slovak University of Agriculture in Nitra Nitra Slovakia
Faculty of Agriculture Sri Sri University Cuttack India
ICAR Indian Grassland and Fodder Research Institute Jhansi India
Institute of Agriculture Sciences Banaras Hindu University Varanasi India
Narayan Institute of Agricultural Sciences Gopal Narayan Singh University Jamuhar India
Zobrazit více v PubMed
AbdElgawad H., Zinta G., Hegab M. M., Pandey R., Asard H., Abuelsoud W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 7:276. 10.3389/fpls.2016.00276 PubMed DOI PMC
Abdi N., Holford P., Mcglasson B. (2002). Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stonefruit. Postharvest Biol. Technol. 26:197. 10.1016/S0925-5214(01)00197-1 DOI
Abogadallah G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 5 369–374. 10.4161/psb.5.4.10873 PubMed DOI PMC
Afroz A., Khan M. R., Ahsan N., Komatsu S. (2009). Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Peptides 30 1600–1607. 10.1016/j.peptides.2009.06.005 PubMed DOI
Agarie S., Shimoda T., Shimizu Y., Baumann K., Sunagawa H., Kondo A., et al. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58 1957–1967. 10.1093/jxb/erm057 PubMed DOI
Aghaei K., Ehsanpour A. A., Komatsu S. (2008). Proteome analysis of potato under salt stress. J. Proteome Res. 7 4858–4868. 10.1021/pr800460y PubMed DOI
Ahmad P., Abdel Latef A. A., Hashem A., Abd-Allah E. F., Gucel S., Tran L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7:347. 10.3389/fpls.2016.00347 PubMed DOI PMC
Ahmad R., Parfitt D. E., Fass J., Ogundiwin E., Dhingra A., Gradziel T. M., et al. (2011). Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genome 12:569. 10.1186/1471-2164-12-569 PubMed DOI PMC
Al-Tamimi N., Brien C., Oakey H., Berger B., Saade S., Ho Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Communi. 7:3342. 10.1038/ncomms13342 PubMed DOI PMC
Amara I., Odena A., Oliveira E., Moreno A., Masmoudi K., Pages M., et al. (2012). Insights into Maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol. 53 312–329. 10.1093/pcp/pcr183 PubMed DOI
Amiour N., Merlino M., Leroy P., Branlard G. (2002). Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels. Proteomics 2 632–641. 10.1002/1615-9861(200206)2:6<632::aid-prot632>3.0.co;2-m PubMed DOI
Amirjani M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am. J. Plant Physiol. 5 350–360. 10.3923/ajpp.2010.350.360 DOI
Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 373–399. 10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Arbona V., Manzi M., Ollas D. C., Gómez-Cadenas A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 14 4885–4911. 10.3390/ijms14034885 PubMed DOI PMC
Arc E., Sechet J., Corbineau F., Rajjou L., Marion-Poll A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4:63. 10.3389/fpls.2013.00063 PubMed DOI PMC
Arrivault S., Guenther M., Ivakov A., Feil R., Vosloh D., Van Dongen J. T., et al. (2009). Use of reverse−phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J. 59 826–839. 10.1111/j.1365-313X.2009.03902.x PubMed DOI
Arshad M., Gruber M. Y., Wall K., Hannoufa A. (2017). An insight into microRNA156 role in salinity stress responses of alfalfa. Front. Plant Sci. 8:356. 10.3389/fpls.2017.00356 PubMed DOI PMC
Atieno J., Li Y., Langridge P., Dowling K., Brien C., Berger B., et al. (2017). Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci. Rep. 7 1–11. 10.1038/s41598-017-01211-7 PubMed DOI PMC
Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. 10.3389/fpls.2016.01414 PubMed DOI PMC
Babaei S., Niknam V., Behmanesh M. (2021). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosys. 155 73–82. 10.1080/11263504.2020.1727975 DOI
Bandehagh A., Salekdeh G. H., Toorchi M., Mohammadi A., Komatsu S. (2011). Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11 1965–1975. 10.1002/pmic.201000564 PubMed DOI
Bargaz A., Nassar R. M. A., Rady M. M., Gaballah M. S., Thompson S. M., Brestic M., et al. (2016). Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P-Efficiency. J. Agron. Crop Sci. 202 497–507. 10.1111/jac.12181 DOI
Batistič O., Kudla J. (2009). Plant calcineurin B-like proteins and their interacting protein kinases. BBA 1793 985–992. 10.1016/j.bbamcr.2008.10.006 PubMed DOI
Baxter I. (2009). Ionomics: studying the social network of mineral nutrients. Curr. Opin. Plant Biol. 12 381–386. 10.1016/j.pbi.2009.05.002 PubMed DOI PMC
Becker J. S., Becker J. S. (2010). Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues. Totowa, NJ: Humana Press, 51–82. PubMed
Berger B., De Regt B., Tester M. (2012). Trait dissection of salinity tolerance with plant phenomics. Totowa, NJ: Humana Press, 399–413. PubMed
Bialecka B., Kepczynski J. (2009). Effect of ethephon and gibberellin A3 on Amaranthus caudatus seed germination and alpha-and beta-amylase activity under salinity stress. Acta Biol. Cracov. Ser. Bot. 2 119–125.
Borrelli G. M., Fragasso M., Nigro F., Platani C., Papa R., Beleggia R., et al. (2018). Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiol. Biochem. 133 57–70. 10.1016/j.plaphy.2018.10.025 PubMed DOI
Bose J., Rodrigo-Moreno A., Shabala S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65 1241–1257. 10.1093/jxb/ert430 PubMed DOI
Bouallègue A., Souissi F., Nouairi I., Souibgui M., Abbes Z., Mhadhbi H. (2017). Salicylic acid and hydrogen peroxide pretreatments alleviate salt stress in faba bean (Vicia faba) seeds during germination. Seed Sci. Tech. 45 675–690. 10.15258/sst.2017.45.3.07 DOI
Boudsocq M., Sheen J. (2009). Stress signaling II: calcium sensing and signaling. In Abiotic stress adaptation in plants. Dordrecht: Springer, 75–90.
Campbell M. T., Knecht A. C., Berger B., Brien C. J., Wang D., Walia H. (2015). Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol. 168 1476–1489. 10.1104/pp.15.00450 PubMed DOI PMC
Campos F. V., Oliveira J. A., Pereira M. G., Farnese F. S. (2019). Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta 250 1475–1489. 10.1007/s00425-019-03236-w PubMed DOI
Carillo P., Annunziata M. G., Pontecorvo G., Fuggi A., Woodrow P. (2011). Salinity stress and salt tolerance. Abiotic Stress Plants Mechan. Adapt. 1 21–38.
Chassaigne H., Nørgaard J. V., Van Hengel A. J. (2007). Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J. Agric. Food Chem. 55 4461–4473. 10.1021/jf063630e PubMed DOI
Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta, et al. (2011). Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochem 72 1293–1307. 10.1016/j.phytochem.2011.01.024 PubMed DOI
Chauhan J., Singhal R. K., Chaudhary S., Sodani R. (2017). Calmodulin in Plant Responses to Abiotic Stresses and Signalling. Int. J. Pure App. Biosci. 5 1122–1131. 10.18782/2320-7051.5235 DOI
Chen F., Fang P., Peng Y., Zeng W., Zhao X., Ding Y., et al. (2019). Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. Int. J. Mol. Sci. 20:4725. 10.3390/ijms20194725 PubMed DOI PMC
Chen F., Fang P., Zeng W., Ding Y., Zhuang Z., Peng Y. (2020). Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One 15:e0233616. 10.1371/journal.pone.0233616 PubMed DOI PMC
Chen S., Gollop N., Heuer B. (2009). Proteomic analysis of salt-stressed tomato (Solanumly copersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J. Exp. Bot. 60 2005–2019. 10.1093/jxb/erp075 PubMed DOI PMC
Chen S., Jia H., Wang X., Shi C., Wang X., Ma P., et al. (2020). Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2. 6 in guard cells. Mol. Plant 13 732–744. 10.1016/j.molp.2020.01.004 PubMed DOI
Chen S., Jiang J., Li H., Liu G. (2012). The salt-responsive transcriptome of Populus simonii× Populus nigra via DGE. Gene 504 203–212. 10.1016/j.gene.2012.05.023 PubMed DOI
Che-Othman M. H., Jacoby R. P., Millar A. H., Taylor N. L. (2019). Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 225 1166–1180. 10.1111/nph.15713 PubMed DOI
Chini A., Gimenez-Ibanez S., Goossens A., Solano R. (2016). Redundancy and specificity in jasmonate signalling. Curr. Opinion Plant Biol. 33 147–156. 10.1016/j.pbi.2016.07.005 PubMed DOI
Chitteti B. R., Peng Z. (2007). Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 6 1718–1727. 10.1021/pr060678z PubMed DOI
Choi W. G., Toyota M., Kim S. H., Hilleary R., Gilroy S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Nat. Acad. Sci. U. S. A. 111 6497–6502. 10.1073/pnas.1319955111 PubMed DOI PMC
Christou A., Filippou P., Manganaris G. A., Fotopoulos V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol. 14:42. 10.1186/1471-2229-14-42 PubMed DOI PMC
Coll N. S., Epple P., Dangl J. L. (2011). Programmed cell death in the plant immune system. Cell Death Diff. 18 1247–1256. 10.1038/cdd.2011.37 PubMed DOI PMC
Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., et al. (2016). A survey of best practices for RNA-seq data analysis. Genome Biol. 17 1–19. 10.1186/s13059-016-0881-8 PubMed DOI PMC
Corpas F. J. (2019). Hydrogen sulfide: a new warrior against abiotic stress. Trends Plant Sci. 24 983–988. 10.1016/j.tplants.2019.08.003 PubMed DOI
Corpas F. J., Palma J. M. (2020). H2S signaling in plants and applications in agriculture. J. Adv. Res. 24 131–137. 10.1016/j.jare.2020.03.011 PubMed DOI PMC
Corpas F. J., Barroso J. B., Carreras A., Quirós M., León A. M., Romero-Puertas M. C., et al. (2004). Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant physiol. 136 2722–2733. 10.1104/pp.104.042812 PubMed DOI PMC
Corpas F. J., Barroso J. B., Carreras A., Valderrama R., Palma J. M., León A. M., et al. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224 246–254. 10.1007/s00425-005-0205-9 PubMed DOI
Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., et al. (2008). Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59 155–163. 10.1093/jxb/erm197 PubMed DOI
Da Silva C. J., Fontes E. P. B., Modolo L. V. (2017). Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci. 256 148–159. 10.1016/j.plantsci.2016.12.011 PubMed DOI
da-Silva C. J., Mollica D. C., Vicente M. H., Peres L. E., Modolo L. V. (2018). NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 76 164–173. 10.1016/j.niox.2017.09.008 PubMed DOI
Day I. S., Reddy V. S., Ali G. S., Reddy A. S. N. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol. 3 1–24. 10.1186/gb-2002-3-10-research0056 PubMed DOI PMC
De Grauwe L., Vriezen W. H., Bertrand S., Phillips A., Vidal A. M., Hedden P., et al. (2007). Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta 226 485–498. 10.1007/s00425-007-0499-x PubMed DOI
DeFalco T. A., Bender K. W., Snedden W. A. (2010). Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 425 27–40. 10.1042/BJ20091147 PubMed DOI
Deinlein U., Stephan A. B., Horie T., Luo W., Xu G., Schroeder J. I. (2014). Plant salt-tolerance mechanisms. Trends Plant Sci. 19 371–379. 10.1016/j.tplants.2014.02.001 PubMed DOI PMC
Deng G., Zhou L., Wang Y., Zhang G., Chen X. (2020). Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. Planta 251 1–13. 10.1007/s00425-019-03334-9 PubMed DOI
Depuydt S., Hardtke C. S. (2011). Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 21 365–373. 10.1016/j.cub.2011.03.013 PubMed DOI
Devoto A., Turner J. G. (2003). Regulation of jasmonate−mediated plant responses in Arabidopsis. Ann. Bot. 92 329–337. 10.1093/aob/mcg151 PubMed DOI PMC
D’Hont A., Denoeud F., Aury J. M., Baurens F. C., Carreel F., Garsmeur O., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488 213–217. 10.1038/nature11241 PubMed DOI
Di Carli M., Zamboni A., Pé M. E., Pezzotti M., Lilley K. S., Benvenuto E., et al. (2011). Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. J. Proteome Res. 10 429–446. 10.1021/pr1005313 PubMed DOI
Dilnur T., Peng Z., Pan Z., Palanga K. K., Jia Y., Gong W., et al. (2019). Association analysis of salt tolerance in Asiatic cotton (Gossypium arboretum) with SNP markers. Int. J. Mol. Sci. 20:2168. 10.3390/ijms20092168 PubMed DOI PMC
Dinler B. S., Antoniou C., Fotopoulos V. (2014). Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J. Plant Physiol. 171 1740–1747. 10.1016/j.jplph.2014.07.026 PubMed DOI
Do P. T., Drechsel O., Heyer A. G., Hincha D. K., Zuther E. (2014). Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front. Plant Sci 5:182. 10.3389/fpls.2014.00182 PubMed DOI PMC
Domingos P., Prado A. M., Wong A., Gehring C., Feijo J. A. (2015). Nitric oxide: a multitasked signaling gas in plants. Mol. Plant 8 506–520. 10.1016/j.molp.2014.12.010 PubMed DOI
Dong F., Simon J., Rienks M., Lindermayr C., Rennenberg H. (2015). Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source. Tree Physiol. 35 910–920. 10.1093/treephys/tpv051 PubMed DOI
Dos Santos V. S., Macedo F. A., do Vale J. S., Silva D. B., Carollo C. A. (2017). Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato. Metabolomics 13:72. 10.1007/s11306-017-1209-8 DOI
Du C. X., Fan H. F., Guo S. R., Tezuka T., Li J. (2010). Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71 1450–1459. 10.1016/j.phytochem.2010.05.020 PubMed DOI
Duque A. S., de Almeida A. M., da Silva A. B., da Silva J. M., Farinha A. P., Santos D., et al. (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. Abiot. Stress Plant Resp. Appl. Agricult. 2013 49–101.
Ekman D. R., Lorenz W. W., Przybyla A. E., Wolfe N. L., Dean J. F. (2003). SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2, 4, 6-trinitrotoluene. Plant Physiol. 133 1397–1406. 10.1104/pp.103.028019 PubMed DOI PMC
El-Metwally S., Ouda O. M., Helmy M. (2014). First-and next-generations sequencing methods. In Next Generation Sequencing Technologies and Challenges in Sequence Assembly. New York, NY: Springer, 29–36.
Fan H. F., Du C. X., Guo S. R. (2012). Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. J. Am. Soc. Hort. Sci. 137 127–133. 10.21273/JASHS.137.3.127 DOI
Fancy N. N., Bahlmann A. K., Loake G. J. (2017). Nitric oxide function in plant abiotic stress. Plant Cell Environ. 40 462–472. 10.1111/pce.12707 PubMed DOI
Farkhondeh R., Nabizadeh E., Jalilnezhad N. (2012). Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. Int. J. Agri. Sci. 2 385–392.
Farmer E. E., Mueller M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Ann. Rev. Plant Biol. 64 429–450. 10.1146/annurev-arplant-050312-120132 PubMed DOI
Fatma M., Masood A., Per T. S., Khan N. A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front. Plant Sci. 7:521. 10.3389/fpls.2016.00521 PubMed DOI PMC
Flowers T. J., Colmer T. D. (2008). Salinity tolerance in halophytes. New Phytol. 2008 945–963. 10.1111/j.1469-8137.2008.02531.x PubMed DOI
Foo E., Ross J. J., Davies N. W., Reid J. B., Weller J. L. (2006). A role for ethylene in the phytochrome−mediated control of vegetative development. Plant J. 46 911–921. 10.1111/j.1365-313X.2006.02754.x PubMed DOI
Fotopoulos V., Sanmartin M., Kanellis A. K. (2006). Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J. Exp.Bot. 57 3933–3943. 10.1093/jxb/erl147 PubMed DOI
Furbank R. T., Tester M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16 635–644. 10.1016/j.tplants.2011.09.005 PubMed DOI
Galant A., Koester R. P., Ainsworth E. A., Hicks L. M., Jez J. M. (2012). From climate change to molecular response: redox proteomics of ozone-induced responses in soybean. New Phytol. 194 220–229. 10.1111/j.1469-8137.2011.04037.x PubMed DOI
Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V. M., et al. (2012). The genome of melon (Cucumis melo L.). Proc. Nat. Acad. Sci. U. S. A. 109 11872–11877. 10.1073/pnas.1205415109 PubMed DOI PMC
Garg N., Singla P. (2016). Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul. 80 5–22. 10.1007/s10725-016-0146-2 DOI
Garufi A., Visconti S., Camoni L., Aducci P. (2007). Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol. 48 434–440. 10.1093/pcp/pcm010 PubMed DOI
Gavaghan C. L., Li J. V., Hadfield S. T., Hole S., Nicholson J. K., Wilson I. D., et al. (2011). Application of NMR−based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem. Analysis 22 214–224. 10.1002/pca.1268 PubMed DOI
Gayen D., Barua P., Lande N. V., Varshney S., Sengupta S., Chakraborty S., et al. (2019). Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environ. Exp. Bot. 160 12–24. 10.1016/j.envexpbot.2019.01.003 DOI
Gémes K., Poór P., Horváth E., Kolbert Z., Szopkó D., Szepesi Á, et al. (2011). Cross−talk between salicylic acid and NaCl−generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plant 142 179–192. 10.1111/j.1399-3054.2011.01461.x PubMed DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Gilliham M., Able J. A., Roy S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J. 90 898–917. 10.1111/tpj.13456 PubMed DOI
Gilroy S., Suzuki N., Miller G., Choi W. G., Toyota M., Devireddy A. R., et al. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19 623–630. 10.1016/j.tplants.2014.06.013 PubMed DOI
Gniazdowska A., Dobrzyńska U., Babańczyk T., Bogatek R. (2007). Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta 225 1051–1057. 10.1007/s00425-006-0384-z PubMed DOI
Gniazdowska A., Krasuska U., Bogatek R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232 1397–1407. 10.1007/s00425-010-1262-2 PubMed DOI
Granier C., Aguirrezabal L., Chenu K., Cookson S. J., Dauzat M., Hamard P., et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169 623–635. 10.1111/j.1469-8137.2005.01609.x PubMed DOI
Guan R., Qu Y., Guo Y., Yu L., Liu Y., Jiang J., et al. (2014). Salinity tolerance in soybean is modulated by natural variation in G m SALT 3. Plant J. 80 937–950. 10.1111/tpj.12695 PubMed DOI
Guo H., Zhu N., Deyholos M. K., Liu J., Zhang X., Dong J. (2015). Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Appl. Biochem. Biotech. 175 2689–2702. 10.1007/s12010-014-1459-0 PubMed DOI
Guo R., Yang Z., Li F., Yan C., Zhong X., Liu Q., et al. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol. 15:170. 10.1186/s12870-015-0546-x PubMed DOI PMC
Gupta B., Huang B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics 2014:701596. 10.1155/2014/701596 PubMed DOI PMC
Gupta K., Dey A., Gupta B. (2013). Plant polyamines in abiotic stress responses. Acta Physiol. Planta 35 2015–2036. 10.1007/s11738-013-1239-4 DOI
Gupta P., Srivastava S., Seth C. S. (2017). 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411 483–498. 10.1007/s11104-016-3043-6 DOI
Hairmansis A., Berger B., Tester M., Roy S. J. (2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7 1–10. 10.1186/s12284-014-0016-3 PubMed DOI PMC
Hajheidari M., Abdollahian-Noghabi M., Askari H., Heidari M., Sadeghian S. Y., Ober E. S., et al. (2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics 5 950–960. 10.1002/pmic.200401101 PubMed DOI
Hajihashemi S., Skalicky M., Brestic M., Pavla V. (2020). Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem. 154 657–664. 10.1016/j.plaphy.2020.07.022 PubMed DOI
Hancock J. T., Whiteman M. (2016). Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann. New York Acad. Sci. 1365 5–14. 10.1111/nyas.12733 PubMed DOI
Harper J. F., Harmon A. (2005). Plants, symbiosis and parasites: a calcium signalling connection. Nat. Rev. Mol. Cell Biol. 6 555–566. 10.1038/nrm1679 PubMed DOI
Hasanuzzaman M., Nahar K., Fujita M. (2013). “Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages,” in Ecophysiology and Responses of Plants Under Salt Stress, eds Ahmed P., Azooz M. M., Prasad M. N. V. (New York, NY: Springer; ), 25–87. 10.1007/978-1-4614-4747-4_2 DOI
Hasanuzzaman M., Oku H., Nahar K., Bhuyan M. B., Al Mahmud J., Baluska F., et al. (2018). Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotech. Rep. 12 77–92. 10.1007/s11816-018-0480-0 DOI
Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. (2000). Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Biol. 51 463–499. PubMed
Herndl A., Marzban G., Kolarich D., Hahn R., Boscia D., Hemmer W., et al. (2007). Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28 437–448. 10.1002/elps.200600342 PubMed DOI
Hirschi K. D. (2003). Strike while the ionome is hot: making the most of plant genomic advances. Trends Biotech. 21 520–521. 10.1016/j.tibtech.2003.09.013 PubMed DOI
Ho W. W. H., Hill C. B., Doblin M. S., Shelden M. C., van de Meene A., Rupasinghe T., et al. (2020). Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms. Plant Communi. 1:100031. 10.1016/j.xplc.2020.100031 PubMed DOI PMC
Hrdlickova R., Toloue M., Tian B. (2017). RNA−Seq methods for transcriptome analysis. Wiley Interdisc. Rev. RNA 8:e1364. 10.1002/wrna.1364 PubMed DOI PMC
Hsu S. Y., Kao C. H. (2003). Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regul. 39 83–90.
Huang D., Huo J., Liao W. (2020). Hydrogen Sulfide: Roles in Plant Abiotic Stress Response and Crosstalk with Other Signals. Plant Sci. 2020:110733. 10.1016/j.plantsci.2020.110733 PubMed DOI
Huang L., Zeng A., Chen P., Wu C., Wang D., Wen Z. (2018). Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]. Plant Breed. 137 714–720. 10.1111/pbr.12623 DOI
Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nat. Gene. 41 1275–1281. PubMed
Huang X. Y., Salt D. E. (2016). Plant ionomics: from elemental profiling to environmental adaptation. Mol. Plant 9 787–797. 10.1016/j.molp.2016.05.003 PubMed DOI
Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Met. 11 1–10. PubMed PMC
Hussain S., Shaukat M., Ashraf M., Zhu C., Jin Q., Zhang J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change Agricult. 72 123–145.
Iqbal N., Masood A., Khan N. A. (2012). Phytohormones in salinity tolerance: ethylene and gibberellins cross talk. In Phytohormones and Abiotic Stress Tolerance in Plants. Heidelberg: Springer, 77–98. 10.1007/978-3-642-25829-9_3 DOI
Ishitani M., Xiong L., Stevenson B., Zhu J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9 1935–1949. 10.1105/tpc.9.11.1935 PubMed DOI PMC
Jacoby R. P., Millar A. H., Taylor N. L. (2010). Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Proteome Res. 9 6595–6604.10.1021/pr1007834 PubMed DOI
Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463. 10.1038/nature06148 PubMed DOI
Jain S., Srivastava S., Sarin N. B., Kav N. N. (2006). Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol. Biochem. 44 253–259. 10.1016/j.plaphy.2006.04.006 PubMed DOI
Jajic I., Sarna T., Strzalka K. (2015). Senescence, stress, and reactive oxygen species. Plants 4 393–411. 10.3390/plants4030393 PubMed DOI PMC
Jamil A., Riaz S., Ashraf M., Foolad M. R. (2011). Gene expression profiling of plants under salt stress. Critical Rev. Plant Sci. 30 435–458. 10.1080/07352689.2011.605739 DOI
Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu, et al. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proceed. Nat. Acad. Sci. U. S. A. 106 20520–20525. 10.1073/pnas.0907205106 PubMed DOI PMC
Jauregui I., Aroca R., Garnica M., Zamarreño ÁM., García−Mina J. M., Serret M. D., et al. (2015). Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. Physiol. Plant. 155 338–354. 10.1111/ppl.12345 PubMed DOI
Jha U. C., Bohra A., Jha R., Parida S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep. 38 255–277. 10.1007/s00299-019-02374-5 PubMed DOI
Ji H., Pardo J. M., Batelli G., Van Oosten M. J., Bressan R. A., Li X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol. Plant 6 275–286. 10.1093/mp/sst017 PubMed DOI
Ji W., Cong R., Li S., Li R., Qin Z., Li Y., et al. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front. Plant Sci. 7:573. 10.3389/fpls.2016.00573 PubMed DOI PMC
Jiao Y., Bai Z., Xu J., Zhao M., Khan Y., Hu Y., et al. (2018). Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots. Plant Physiol. Biochem. 126 187–196. 10.1016/j.plaphy.2018.03.002 PubMed DOI
Jogaiah S., Govind S. R., Tran L. S. P. (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. Critical Rev. Biotech. 33 23–39. 10.3109/07388551.2012.659174 PubMed DOI
Kader M. A., Lindberg S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal. Behav. 5 233–238. 10.4161/psb.5.3.10740 PubMed DOI PMC
Kalhor M. S., Aliniaeifard S., Seif M., Asayesh E. J., Bernard F., Hassani B., et al. (2018). Enhanced salt tolerance and photosynthetic performance: Implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiol. Biochem. 130 157–172. 10.1016/j.plaphy.2018.07.003 PubMed DOI
Kalluri U. C., Hurst G. B., Lankford P. K., Ranjan P., Pelletier D. A. (2009). Shotgun proteome profile of Populus developing xylem. Proteomics 9 4871–4880. 10.1002/pmic.200800854 PubMed DOI
Kärkönen A., Kuchitsu K. (2015). Reactive oxygen species in cell wall metabolism and development in plants. Phytochem 112 22–32. 10.1016/j.phytochem.2014.09.016 PubMed DOI
Kaul S., Koo H. L., Jenkins J., Rizzo M., Rooney T., Tallon L. J., et al. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796–815. 10.1038/35048692 PubMed DOI
Kavas M., Baloğlu M. C., Atabay E. S., Ziplar U. T., Das̨gan H. Y., Ünver T. (2016). Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol. Gen. Genom. 291 129–143. 10.1007/s00438-015-1095-6 PubMed DOI
Kaya C., Higgs D., Ashraf M., Alyemeni M. N., Ahmad P. (2020). Integrative roles of nitric oxide and hydrogen sulfide in melatonin−induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol. Plant. 168 256–277. 10.1111/ppl.12976 PubMed DOI
Keshet Y., Seger R. (2010). The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. MAP Kinase Sign. Prot. 2 3–38. 10.1007/978-1-60761-795-2_1 PubMed DOI
Khan A., Ahmad I., Shah A., Ahmad F., Ghani A., Nawaz M., et al. (2013). Amelioration of salinity stress in wheat (Triticum aestivum L) by foliar application of phosphorus. Phyton 82:281. 10.32604/phyton.2013.82.281 DOI
Khan M. N., Siddiqui M. H., Mohammad F., Naeem M. (2012). Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27 210–218. 10.1016/j.niox.2012.07.005 PubMed DOI
Khan M. N., Siddiqui M. H., Mukherjee S., Alamri S., Al-Amri A. A., Alsubaie Q. D., et al. (2020). Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. Plant Physiol. Biochem. 159 211–225. 10.1016/j.plaphy.2020.11.055 PubMed DOI
Khan M. S. (2011). Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: present and future challenges. Afr. J. Biotech. 10 13693–13704. 10.5897/ajb11.1630 DOI
Kodela R., Chattopadhyay M., Kashfi K. (2012). NOSH-aspirin: a novel nitric oxide–hydrogen sulfide-releasing hybrid: a new class of anti-inflammatory pharmaceuticals. ACS Med. Chem. Lett. 3 257–262. 10.1021/ml300002m PubMed DOI PMC
Kong X., Wang T., Li W., Tang W., Zhang D., Dong H. (2016). Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol. Plant. 38:79 10.1007/s11738-016-2079-9 DOI
Kreszies T., Shellakkutti N., Osthoff A., Yu P., Baldauf J. A., Zeisler−Diehl V. V. (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol. 221 180–194. 10.1111/nph.15351 PubMed DOI PMC
Kudla J., Batistič O., Hashimoto K. (2010). Calcium signals: the lead currency of plant information processing. Plant Cell 22 541–563. 10.1105/tpc.109.072686 PubMed DOI PMC
Kumar V., Singh A., Mithra S. A., Krishnamurthy S. L., Parida S. K., Jain S., et al. (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res. 22 133–145. 10.1093/dnares/dsu046 PubMed DOI PMC
Kumari A., Das P., Parida A. K., Agarwal P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 6:537. 10.3389/fpls.2015.00537 PubMed DOI PMC
Kurusu T., Kuchitsu K., Tada Y. (2015). Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci. 6:427. 10.3389/fpls.2015.00427 PubMed DOI PMC
Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., et al. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS−dependent ABA signaling in Arabidopsis. EMBO J. 22 2623–2633. 10.1093/emboj/cdg277 PubMed DOI PMC
Lakra N., Kaur C., Singla-Pareek S. L., Pareek A. (2019). Mapping the ‘early salinity response’triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Rice 12 1–22. 10.1007/s10142-015-0460-1 PubMed DOI PMC
Lamattina L., García-Mata C., Graziano M., Pagnussat G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Ann. Rev. Plant Biol. 54 109–136. 10.1146/annurev.arplant.54.031902.134752 PubMed DOI
Lamotte O., Courtois C., Dobrowolska G., Besson A., Pugin A., Wendehenne D. (2006). Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radi. Biol. Med. 40 1369–1376. 10.1016/j.freeradbiomed.2005.12.006 PubMed DOI
Lapopin L., Gianinazzi-Pearson V., Franken P. (1999). Comparative differential RNA display analysis of arbuscular mycorrhiza in Pisum sativum wild type and a mutant defective in late stage development. Plant Mol. Biol. 41 669–677. PubMed
Läuchli A., Grattan S. R. (2007). Plant growth and development under salinity stress. In Advances in molecular breeding toward drought and salt tolerant crops. Dordrecht: Springer, 1–32.
Lee-Parsons C. W., Ertürk S. (2005). Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca 2+ level. Plant Cell Rep. 24 677–682. 10.1007/s00299-005-0026-0 PubMed DOI
Leisner C. P., Yendrek C. R., Ainsworth E. A. (2017). Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol. 17:1188. 10.1186/s12870-017-1188-y PubMed DOI PMC
Leterrier M., Chaki M., Airaki M., Valderrama R., Palma J. M., Barroso J. B., et al. (2011). Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal. Behav. 6 789–793. 10.4161/psb.6.6.15161 PubMed DOI PMC
Leubner-Metzger G., Petruzzelli L., Waldvogel R., Vögeli-Lange R., Meins F. (1998). Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1, 3-glucanase during tobacco seed germination. Plant Mol. Biol. 38 785–795. 10.1023/A:1006040425383 PubMed DOI
Li H., Rasheed A., Hickey L. T., He Z. (2018). Fast-forwarding genetic gain. Trends Plant Sci. 23 184–186. 10.1016/j.tplants.2018.01.007 PubMed DOI
Li J., Jia H., Wang J., Cao Q., Wen Z. (2014). Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251 899–912. 10.1007/s00709-013-0592-x PubMed DOI
Li L., Wang X., Stolc V., Li X., Zhang D., Su N., et al. (2006). Genome-wide transcription analyses in rice using tiling microarrays. Nat. Gen. 38 124–129. 10.1038/ng1704 PubMed DOI
Li P., Cao W., Fang H., Xu S., Yin S., Zhang Y., et al. (2017). Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front. Plant Sci. 8:290. 10.3389/fpls.2017.00290 PubMed DOI PMC
Li T. T., Li Z. R., Hu K. D., Hu L. Y., Chen X. Y., Li, et al. (2017). Hydrogen sulfide alleviates kiwifruit ripening and senescence by antagonizing effect of ethylene. HortSci 52 1556–1562. 10.21273/HORTSCI12261-17 DOI
Li X., Jiang H., Liu F., Cai J., Dai T., Cao W., et al. (2013). Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul. 71 31–40. 10.1007/s10725-013-9805-8 DOI
Li Z. G., Min X., Zhou Z. H. (2016). Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front. Plant Sci. 7:1621. 10.3389/fpls.2016.01621 PubMed DOI PMC
Li Z. G., Yi X. Y., Li Y. T. (2014). Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia 69 1001–1009. 10.2478/s11756-014-0396-2 DOI
Li Z., Xu J., Gao Y., Wang C., Guo G., Luo Y., et al. (2017). The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front. Plant Sci. 8:1153. 10.3389/fpls.2017.01153 PubMed DOI PMC
Lin Y., Yang L., Paul M., Zu Y., Tang Z. (2013). Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol. Biochem. 73 211–218. 10.1016/j.plaphy.2013.10.003 PubMed DOI
Lisjak M., Teklic T., Wilson I. D., Whiteman M., Hancock J. T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 36 1607–1616. 10.1111/pce.12073 PubMed DOI
Liu D., Li J., Li Z., Pei Y. (2020). Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). Hort. Res. 7 1–11. 10.1038/s41438-019-0237-0 PubMed DOI PMC
Liu J. H., Nada K., Honda C., Kitashiba H., Wen X. P., Pang X. M., et al. (2006). Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J. Exp. Bot. 57 2589–2599. 10.1093/jxb/erl018 PubMed DOI
Liu L., Nakamura Y., Taliman N. A., Sabagh A. E., Moghaieb R. E., Saneoka H. (2020). Differences in the growth and physiological responses of the leaves of Peucedanum japonicum and Hordeum vulgare exposed to salinity. Agric 10:317. 10.3390/agriculture10080317 DOI
Liu X., Chen J., Wang G. H., Wang W. H., Shen Z. J., Luo M. R., et al. (2016). Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 400 177–192. 10.1007/s11104-015-2719-7 DOI
Liu Y., Zhou J., White K. P. (2014). RNA-seq differential expression studies: more sequence or more replication? Bioinform 30 301–304. 10.1093/bioinformatics/btt688 PubMed DOI PMC
Lu S., Su W., Li H., Guo Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2-and NO-induced antioxidant enzyme activities. Plant Physiol. Biochem. 47 132–138. 10.1016/j.plaphy.2008.10.006 PubMed DOI
Lu Y., Lam H., Pi E., Zhan Q., Tsai S., Wang C., et al. (2013a). Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem. 61 8711–8721. 10.1021/jf402043m PubMed DOI
Lu Y., Li N., Sun J., Hou P., Jing X., Zhu H., et al. (2013b). Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiol. 33 81–95. 10.1093/treephys/tps119 PubMed DOI
Luo M., Zhao Y., Wang Y., Shi Z., Zhang P., Zhang Y., et al. (2018). Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. J. Prote. Res. 17 141–153. 10.1021/acs.jproteome.7b00455 PubMed DOI
Ma D., Ding H., Wang C., Qin H., Han Q., Hou J., et al. (2016). Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS one 11:e163082 10.1371/journal.pone.0163082 PubMed DOI PMC
Ma N. L., Lah W. A. C., Kadir N. A., Mustaqim M., Rahmat Z., Ahmad A., et al. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One 2018:e0192732. 10.1371/journal.pone.0192732 PubMed DOI PMC
Ma Y., Zhang W., Niu J., Ren Y., Zhang F. (2019). Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Funct. Plant Biol. 46 136–145. 10.1071/FP18096 PubMed DOI
Maathuis F. J. (2006). The role of monovalent cation transporters in plant responses to salinity. J. Exp. Bot. 57 1137–1147.10.1093/jxb/erj001 PubMed DOI
Mahajan S., Tuteja N. (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophy. 444 139–158. 10.1016/j.abb.2005.10.018 PubMed DOI
Manaa A., Ben Ahmed H., Valot B., Bouchet J. P., Aschi-Smiti S., Causse M., et al. (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 62 2797–2813. 10.1093/jxb/erq460 PubMed DOI
Mansuri R. M., Shobbar Z. S., Jelodar N. B., Ghaffari M., Mohammadi S. M., Daryani P. (2020). Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC Plant Biol. 20:114. PubMed PMC
Marco F., Alcázar R., Tiburcio A. F., Carrasco P. (2011). Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15 775–781. 10.1089/omi.2011.0084 PubMed DOI PMC
Martínez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J. K., Pardo J. M., et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143 1001–1012. 10.1104/pp.106.092635 PubMed DOI PMC
Matsumura H., Nirasawa S., Terauchi R. (1999). Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J. 20 719–726. 10.1046/j.1365-313x.1999.00640.x PubMed DOI
McAinsh M. R., Pittman J. K. (2009). Shaping the calcium signature. New Phytol. 181 275–294. 10.1111/j.1469-8137.2008.02682.x PubMed DOI
Mehta S., James D., Reddy M. K. (2019). Omics technologies for abiotic stress tolerance in plants: current status and prospects. In Recent Approaches in Omics for Plant Resilience to Climate Change. Cham: Springer, 1–34. 10.1007/978-3-030-21687-0_1 DOI
Meng R., Saade S., Kurtek S., Berger B., Brien C., Pillen K., et al. (2017). Growth curve registration for evaluating salinity tolerance in barley. Plant Met. 13 1–9. PubMed PMC
Ming R., Hou S., Feng Y., Yu Q., Dionne-Laporte A., Saw J. H., et al. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.). Nature 452 991–996. PubMed PMC
Mishra S., Singh B., Misra P., Rai V., Singh N. K. (2016a). Haplotype distribution and association of candidate genes with salt tolerance in Indian wild rice germplasm. Plant Cell Rep. 35 2295–2308. 10.1007/s00299-016-2035-6 PubMed DOI
Mishra S., Singh B., Panda K., Singh B. P., Singh N., Misra P., et al. (2016b). Association of SNP haplotypes of HKT family genes with salt tolerance in Indian wild rice germplasm. Rice 9 1–13. PubMed PMC
Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 405–410. 10.1016/S1360-1385(02)02312-9 PubMed DOI
Mittler R., Vanderauwera S., Suzuki N., Miller G. A. D., Tognetti V. B., Vandepoele K., et al. (2011). ROS signaling: the new wave? Trends Plant Sci. 16 300–309. 10.1016/j.tplants.2011.03.007 PubMed DOI
Mockaitis K., Howell S. H. (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24 785–796. 10.1111/j.1365-313X.2000.00921.x PubMed DOI
Molassiotis A., Fotopoulos V. (2011). Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal. Behav. 6 210–214. 10.4161/psb.6.2.14878 PubMed DOI PMC
Molassiotis A., Tanou G., Diamantidis G. (2010). NO says more than ‘YES’to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signal. Behav. 5 209–212. 10.4161/psb.5.3.10738 PubMed DOI PMC
Molina C., Rotter B., Horres R., Udupa S. M., Besser B., Bellarmino L., et al. (2008). SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom. 9:553. 10.1186/1471-2164-9-553 PubMed DOI PMC
Molina C., Zaman-Allah M., Khan F., Fatnassi N., Horres R., Rotter B., et al. (2011). The salt-responsive transcriptome of chickpea roots and nodules via deep SuperSAGE. BMC Plant Biol. 11:31. 10.1186/1471-2229-11-31 PubMed DOI PMC
Monshausen G. B., Bibikova T. N., Weisenseel M. H., Gilroy S. (2009). Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21 2341–2356. 10.1105/tpc.109.068395 PubMed DOI PMC
Moreau M., Lee G. I., Wang Y., Crane B. R., Klessig D. F. (2008). AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J. Biol. Chem. 283 32957–32967. 10.1074/jbc.M804838200 PubMed DOI PMC
Mosa K. A., Ismail A., Helmy M. (2017). Omics and system biology approaches in plant stress research. In Plant stress tolerance. Cham: Springer, 21–34. 10.1007/978-3-319-59379-1_2 DOI
Mostofa M. G., Rahman A., Ansary M. M. U., Watanabe A., Fujita M., Tran L. S. P. (2015a). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci. Rep. 5 1–17. 10.1038/srep14078 PubMed DOI PMC
Mostofa M. G., Saegusa D., Fujita M., Tran L. S. P. (2015b). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci 6:1055. 10.3389/fpls.2015.01055 PubMed DOI PMC
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre−prophase band, phragmoplast, trans−Golgi network and plasma membrane. Plant J. 61 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI
Munns R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16 15–24. 10.1111/j.1365-3040.1993.tb00840.x DOI
Munns R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167 645–663. 10.1111/j.1469-8137.2005.01487.x PubMed DOI
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Mwando E., Han Y., Angessa T. T., Zhou G., Hill C. B., Zhang X. Q., et al. (2020). Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front. Plant Sci. 11:118. 10.3389/fpls.2020.00118 PubMed DOI PMC
Nakagami H., Pitzschke A., Hirt H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 10 339–346. 10.1016/j.tplants.2005.05.009 PubMed DOI
Negrão S., Cecília Almadanim M., Pires I. S., Abreu I. A., Maroco J., Courtois B., et al. (2013). New allelic variants found in key rice salt−tolerance genes: an association study. Plant Biotech. J. 11 87–100. 10.1111/pbi.12010 PubMed DOI
Negrão S., Schmöckel S. M., Tester M. (2017). Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119 1–11. 10.1093/aob/mcw191 PubMed DOI PMC
Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53 1237–1247. 10.1093/jexbot/53.372.1237 PubMed DOI
Ngara R., Ndimba R., Borch-Jensen J., Jensen O. N., Ndimba B. (2012). Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J. Proteomics 75 4139–4150. 10.1016/j.jprot.2012.05.038 PubMed DOI
Ni J., Yang X., Zhu J., Liu Z., Ni Y., Wu H., et al. (2015). Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. PCTOC 122 239–248. 10.1007/s11240-015-0744-0 DOI
Noctor G., Reichheld J. P., Foyer C. H. (2018). ROS-related redox regulation and signaling in plants. In Seminars in Cell & Developmental Biology, Vol. 80. New York: Academic Press, 3–12. PubMed
Olías R., Eljakaoui Z., Pardo J. M., Belver A. (2009). The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal. Behav. 4 973–976. 10.4161/psb.4.10.9679 PubMed DOI PMC
Ouyang S., He S., Liu P., Zhang W., Zhang J., Chen S. (2011). The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci. China Life Sci. 54 181–188. 10.1007/s11427-011-4138-1 PubMed DOI
Pan J., Li Z., Dai S., Ding H., Wang Q., Li X., et al. (2020). Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci. Rep. 10 1–16. 10.1038/s41598-020-70520-1 PubMed DOI PMC
Paranhos A. (2014). Interplay of calcium, cAMP and PKA in flavonoid accumulation by cell cultures of Hypericum androsaemum L. Planta Medica 80:53. 10.1055/s-0034-1395053 DOI
Parida A. K., Panda A., Rangani J. (2018). Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Plant metabolites and regulation under environmental stress. San Diego, CA: Academic, 89–131. 10.1016/B978-0-12-812689-9.00005-4 DOI
Parihar P., Singh S., Singh R., Singh V. P., Prasad S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Env. Sci. Pol. Res. 22 4056–4075. 10.1007/s11356-014-3739-1 PubMed DOI
Paterson A. H., Bowers J. E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457 551–556. PubMed
Pathak M. R., Teixeira, da Silva J. A., Wani S. H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5 87–96. 10.4161/gmcr.28774 PubMed DOI PMC
Paul B. D., Snyder S. H. (2012). H 2 S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 13 499–507. 10.1038/nrm3391 PubMed DOI
Pedreschi R., Hertog M., Robben J., Noben J. P., Nicolai B. (2008). Physiological implications of controlled atmosphere storage of ‘Conference’ pears (Pyrus communis L.): a proteomic approach. Postharvest Biol. Technol. 50 110–116. 10.1016/j.postharvbio.2008.04.004 DOI
Pei Y., Jin Z., Liu Z., Fang H., Zhang L., Hao X., et al. (2018). Gasotransmitters in Plants. Gasotransmitters 12:235. 10.1039/9781788013000-00235 DOI
Peng Z., He S., Gong W., Sun J., Pan Z., Xu F., et al. (2014). Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genom. 15:760. 10.1186/1471-2164-15-760 PubMed DOI PMC
Peng Z., Wang M., Li F., Lv H., Li C., Xia G. (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cellu. Proteom. 8 2676–2686. 10.1074/mcp.M900052-MCP200 PubMed DOI PMC
Pennisi E. (2008). Corn genomics pops wide open. Science 319:1333. 10.1126/science.319.5868.1333 PubMed DOI
Pennisi E. (2013). The CRISPR craze. Science 341 833–836. 10.1126/science.341.6148.833 PubMed DOI
Pessarakli M., Szabolcs I. (1999). Soil salinity and sodicity as particular plant/crop stress factors. Handb. Plant Crop Stress 1998:19.
Poór P., Tari I. (2011). Ethylene-regulated reactive oxygen species and nitric oxide under salt stress in tomato cell suspension culture. Acta Biol. Szeged. 55 143–146.
Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. 13 105–114. 10.1111/j.1438-8677.2010.00344.x PubMed DOI
Poór P., Szopkó D., Tari I. (2012). Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. Vitro Cell. Devel. Biol. Plant 48 377–382. 10.1007/s11627-011-9419-7 DOI
Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature 475:189. 10.1038/nature10158 PubMed DOI
Pottosin I., Shabala S. (2014). Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front. Plant Sci 5:154. 10.3389/fpls.2014.00154 PubMed DOI PMC
Pottosin I., Velarde-Buendía A. M., Bose J., Zepeda-Jazo I., Shabala S., Dobrovinskaya O. (2014). Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J. Exp. Bot. 65 1271–1283. 10.1093/jxb/ert423 PubMed DOI
Pottosin I., Velarde-Buendía A. M., Zepeda-Jazo I., Dobrovinskaya O., Shabala S. (2012). Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal. Behav. 7 1084–1087. 10.4161/psb.21185 PubMed DOI PMC
Prakash V., Singh V. P., Tripathi D. K., Sharma S., Corpas F. J. (2019). Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ. Exp. Bot. 161 41–49. 10.1016/j.envexpbot.2018.10.033 DOI
Qadir M., Qureshi A. S., Cheraghi S. A. M. (2008). Extent and characterisation of salt−affected soils in Iran and strategies for their amelioration and management. Land Degrad. Develop. 19 214–227. 10.1002/ldr.818 DOI
Qiao W., Li C., Fan L. M. (2014). Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ. Exp. Bot. 100 84–93. 10.1016/j.envexpbot.2013.12.014 DOI
Qiao W., Xiao S., Yu L., Fan L. M. (2009). Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. Environ. Exp. Bot. 65 90–98. 10.1016/j.envexpbot.2008.06.002 DOI
Quintero F. J., Ohta M., Shi H., Zhu J. K., Pardo J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc. Nat. Acad. Sci. U. S. A. 99 9061–9066. 10.1073/pnas.132092099 PubMed DOI PMC
Ramalingam A., Kudapa H., Pazhamala L. T., Weckwerth W., Varshney R. K. (2015). Proteomics and metabolomics: two emerging areas for legume improvement. Front. Plant Sci. 6:1116. 10.3389/fpls.2015.01116 PubMed DOI PMC
Raney J. A. (2012). Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am. J. Plant Sci. 5 338–357. 10.4236/ajps.2014.53047 DOI
Rao M. V., Paliyath G., Ormrod D. P., Murr D. P., Watkins C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol. 115 137–149. 10.1104/pp.115.1.137 PubMed DOI PMC
Rasel M., Tahjib-Ul-Arif M., Hossian M. A. (2020). Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism multidimensional roles in salt-stressed plants. J. Plant Growth Regul. 20:235. 10.1007/s0034 4-020-10235 -9 DOI
Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161 1783–1794. 10.1104/pp.112.210773 PubMed DOI PMC
Ravelombola W., Shi A., Weng Y., Mou B., Motes D., Clark J., et al. (2018). Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theoret. Appl. Genet. 131 79–91. 10.1007/s00122-017-2987-0 PubMed DOI
Razavizadeh R., Ehsanpour A. A., Ahsan N., Komatsu S. (2009). Proteome analysis of tobacco leaves under salt stress. Peptides 30 1651–1659. 10.1016/j.peptides.2009.06.023 PubMed DOI
Rea P. A. (2003). Ion genomics. Nat. Biotech. 21 1149–1151. PubMed
Rouphael Y., Raimondi G., Lucini L., Carillo P., Kyriacou M. C., Colla G., et al. (2018). Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front. Plant Sci. 9:249. PubMed PMC
Sabagh A. E., Hossain A., Islam S., Barutcular C., Hussain S., Hasanuzzaman M., et al. (2019). Drought and salinity stresses in barley: consequences and mitigation strategies. Aus. J. Crop Sci. 13 810–820. 10.21475/ajcs.19.13.06.p1286 DOI
Sahi C., Singh A., Kumar K., Blumwald E., Grover A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integ. Genomics 6 263–284. 10.1007/s10142-006-0032-5 PubMed DOI
Salt D. E., Baxter I., Lahner B. (2008). Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 59 709–733. 10.1146/annurev.arplant.59.032607.092942 PubMed DOI
Sanadhya P., Agarwal P., Agarwal P. K. (2015). Ion homeostasis in a salt-secreting halophytic grass. AoB Plants 7:1. 10.1201/b19862-2 PubMed DOI PMC
Sanchez D. H., Pieckenstain F. L., Escaray F., Erban A., Kraemer U. T. E., Udvardi M. K., et al. (2011). Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre−adaptation hypothesis. Plant Cell Environ. 34 605–617. 10.1111/j.1365-3040.2010.02266.x PubMed DOI
Sanchez D. H., Siahpoosh M. R., Roessner U., Udvardi M., Kopka J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 132 209–219. PubMed
Santolini J., André F., Jeandroz S., Wendehenne D. (2017). Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63 30–38. 10.1016/j.niox.2016.09.005 PubMed DOI
Sasabe M., Machida Y. (2012). Regulation of organization and function of microtubules by the mitogen−activated protein kinase cascade during plant cytokinesis. Cytoskeleton 69 913–918. 10.1002/cm.21072 PubMed DOI
Scherling C., Roscher C., Giavalisco P., Schulze E. D., Weckwerth W. (2010). Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569. 10.1371/journal.pone.0012569 PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463 178–183. PubMed
Schnable P. S., Ware D., Fulton R. S., Stein J. C., Wei F., Pasternak S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326 1112–1115. PubMed
Schulte D., Close T. J., Graner A., Langridge P., Matsumoto T., Muehlbauer G., et al. (2009). The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149 142–147. 10.1104/pp.108.128967 PubMed DOI PMC
Seifikalhor M., Aliniaeifard S., Hassani B., Niknam V., Lastochkina O. (2019). Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 19 1–21. 10.1007/s00299-019-02396-z PubMed DOI
Serrano R., Rodriguez-Navarro A. (2001). Ion homeostasis during salt stress in plants. Curr. Opin. Cell Biol. 13 399–404. 10.1016/S0955-0674(00)00227-1 PubMed DOI
Shabala S., Mackay A. (2011). Ion transport in halophytes. Adv. Bot. Res. 57 151–199. 10.1016/b978-0-12-387692-8.00005-9 DOI
Shabala S., Newman I. (2000). Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall. Ann. Bot. 85 681–686. 10.1006/anbo.2000.1131 DOI
Shabala S., Shabala L., Barcelo J., Poschenrieder C. (2014). Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ. 37 2216–2233. PubMed
Shelden M. C., Roessner U. (2013). Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front. Plant Sci. 4:123. PubMed PMC
Shelden M. C., Dias D. A., Jayasinghe N. S., Bacic A., Roessner U. (2016). Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. J. Exp. Bot. 67 3731–3745. 10.1093/jxb/erw059 PubMed DOI PMC
Shen Q., Fu L., Dai F., Jiang L., Zhang G., Wu D. (2016). Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC genomics, 17:889. 10.1186/s12864-016-3242-9 PubMed DOI PMC
Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. (2019). Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 111 1142–1151. 10.1016/j.ygeno.2018.07.009 PubMed DOI
Sheokand S., Bhankar V., Sawhney V. (2010). Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazil. J. Plant Physiol. 22 81–90. 10.1590/S1677-04202010000200002 DOI
Shi H., Chan Z. (2014). Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J. Integ. Plant Biol. 56 114–121. 10.1111/jipb.12128 PubMed DOI
Shi H., Quintero F. J., Pardo J. M., Zhu J. K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14 465–477. 10.1105/tpc.010371 PubMed DOI PMC
Shulaev V., Sargent D. J., Crowhurst R. N., Mockler T. C., Folkerts O., et al. (2011). The genome of woodland strawberry (Fragaria vesca). Nat. Gen. 43 109–116. PubMed PMC
Siddiqui M. H., Mohammad F., Khan M. M. A., Al-Whaibi M. H. (2012). Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249 139–153. 10.1007/s00709-011-0273-6 PubMed DOI
Simaei M., Khavarinejad R. A., Saadatmand S., Bernard F., Fahimi H. (2011). Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. Russ. J. Plant Physiol. 58 783–790. 10.1134/S1021443711050220 DOI
Singh N. K., Mahato A. K., Sharma N., Gaikwad K., Srivastava M., Tiwari K., et al. (2014). “A draft genome of the king of fruit, mango (Mangifera indica L.),”in Plant and Animal Genome XXII Conference. (New York: Acadamic Press; ).
Singh R. P., Runthala A., Khan S., Jha P. N. (2017). Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PLoS One 12:e0183513. 10.1371/journal.pone.0183513 PubMed DOI PMC
Singhal R. K., Sodani R., Chauhan J., Sharma M. K., Yashu B. R. (2017). Physiological Adaptation and Tolerance Mechanism of Rice (Oryza sativa L.) in Multiple Abiotic Stresses. Int. J. Pure App. Biosci 5 459–466. 10.18782/2320-7051.5036 DOI
Smékalová V., Doskočilová A., Komis G., Šamaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotech. Adv. 32 2–11. 10.1016/j.biotechadv.2013.07.009 PubMed DOI
Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A. A., Jazii F. R., Motamed N., et al. (2010). Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 8 1–15. 10.1186/1477-5956-8-19 PubMed DOI PMC
Soda N., Wallace S., Karan R. (2015). Omics study for abiotic stress responses in plants. Adv. Plants Agri. Res. 2 00037.
Steffens B., Wang J., Sauter M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223 604–612. 10.1007/s00425-005-0111-1 PubMed DOI
Su H., Balderas E., Vera-Estrella R., Golldack D., Quigley F., Zhao C., et al. (2003). Expression of the cation transporter McHKT1 in a halophyte. Plant Mol. Biol. 52 967–980. PubMed
Suarez M. C., Bernal A., Gutierrez J., Tohme J., Fregene M. (2000). Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome 43 62–67. 10.1139/g99-073 PubMed DOI
Subudhi P. K., Shankar R., Jain M. (2020). Whole genome sequence analysis of rice genotypes with contrasting response to salinity stress. Sci. Rep. 10 1–13. PubMed PMC
Süle A., Vanrobaeys F., Hajós G., Van Beeumen J., Devreese B. (2004). Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochem 65 1853–1863. 10.1016/j.phytochem.2004.03.030 PubMed DOI
Sun C., Lu L., Yu Y., Liu L., Hu Y., Ye, et al. (2016). Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J. Exp. Bot. 67 979–989. 10.1093/jxb/erv514 PubMed DOI PMC
Sun J., Li L., Liu M., Wang M., Ding M., Deng S., et al. (2010). Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tiss. Organ Cult. 103 205–215. 10.1007/s11240-010-9768-7 DOI
Suzuki N., Koussevitzky S. H. A. I., Mittler R. O. N., Miller G. A. D. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Env. 35 259–270. 10.1111/j.1365-3040.2011.02336.x PubMed DOI
Svensson J. T., Crosatti C., Campoli C., Bassi R., Stanca A. M., Close T. J., et al. (2006). Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol. 141 257–270. 10.1104/pp.105.072645 PubMed DOI PMC
Swami A. K., Alam S. I., Sengupta N., Sarin R. (2011). Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ. Exp. Bot. 71 321–328. 10.1016/j.envexpbot.2010.12.017 DOI
Szepesi Á, Csiszár J., Gémes K., Horváth E., Horváth F., Simon M. L., et al. (2009). Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J. Plant Physiol. 166 914–925. 10.1016/j.jplph.2008.11.012 PubMed DOI
Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. (2008). Local positive feedback regulation determines cell shape in root hair cells. Science 319 1241–1244. 10.1126/science.1152505 PubMed DOI
Tang R. J., Liu H., Bao Y., Lv Q. D., Yang L., Zhang H. X. (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74 367–380. 10.1007/s11103-010-9680-x PubMed DOI
Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., et al. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 60 795–804. 10.1111/j.1365-313x.2009.04000.x PubMed DOI
Tena G., Boudsocq M., Sheen J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opinion Plant Biol. 14 519–529. 10.1016/j.pbi.2011.05.006 PubMed DOI PMC
Thitisaksakul M., Tananuwong K., Shoemaker C. F., Chun A., Tanadul O. U. M., Labavitch J. M., et al. (2015). Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J. Agri. Food Chem. 63 2296–2304. 10.1021/jf503948p PubMed DOI
Tracy F. E., Gilliham M., Dodd A. N., Webb A. A., Tester M. (2008). NaCl−induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ. 31 1063–1073. 10.1111/j.1365-3040.2008.01817.x PubMed DOI
Türkan I., Demiral T. (2009). Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 67 2–9. 10.1016/j.envexpbot.2009.05.008 DOI
Tuskan G. A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313 1596–1604. PubMed
Tuteja N. (2007). Mechanisms of high salinity tolerance in plants. Met. Enzymol. 428 419–438. 10.1016/S0076-6879(07)28024-3 PubMed DOI
Uchida A., Jagendorf A. T., Hibino T., Takabe T., Takabe T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163 515–523. 10.1016/S0168-9452(02)00159-0 DOI
Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanadian M. (2020a). Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyi Boiss. Biologia 75 2147–2158. 10.2478/s11756-020-00562-3 PubMed DOI
Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanadian M., Talebi M., Ghanati F. (2020c). Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. Phytochemistry 177:112422. 10.1016/j.phytochem.2020.112422 PubMed DOI
Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanati F., Sajedi R. H. (2020b). Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J. Plant Physiol. 252:153237. 10.1016/j.jplph.2020.153237 PubMed DOI
Velarde-Buendía A. M., Shabala S., Cvikrova M., Dobrovinskaya O., Pottosin I. (2012). Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol. Biochem. 61 18–23. 10.1016/j.plaphy.2012.09.002 PubMed DOI
Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A., Kalyanaraman A., et al. (2010). The genome of the domesticated apple (Malus× domestica Borkh.). Nat. Gen. 42 833–839. PubMed
Vighi I. L., Crizel R. L., Perin E. C., Rombaldi C. V., Galli V. (2019). Crosstalk during fruit ripening and stress response among abscisic acid, calcium-dependent protein kinase and phenylpropanoid. Critical Rev. Plant Sci. 38 99–116. 10.1080/07352689.2019.1602959 DOI
Vu W. T., Chang P. L., Moriuchi K. S., Friesen M. L. (2015). Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evoluti. Biol. 15:322. 10.1186/s12862-015-0322-4 PubMed DOI PMC
Wahid A., Perveen M., Gelani S., Basra S. M. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Plant physiol. 164 283–294. 10.1016/j.jplph.2006.01.005 PubMed DOI
Wakeel A., Asif A. R., Pitann B., Schubert S. (2011). Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J. Plant Physiol. 168 519–526. 10.1016/j.jplph.2010.08.016 PubMed DOI
Wang H., Liang X., Wan Q., Wang X., Bi Y. (2009). Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230 293–307. 10.1007/s00425-009-0946-y PubMed DOI
Wang H., Tang X., Wang H., Shao H. B. (2015). Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front. Plant Sci. 6:792. 10.3389/fpls.2015.00792 PubMed DOI PMC
Wang Y., Li L., Cui W., Xu S., Shen W., Wang R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351 107–119. 10.1007/s11104-011-0936-2 DOI
Webb A. A., McAinsh M. R., Taylor J. E., Hetherington A. M. (1996). Calcium ions as intracellular second messengers in higher plants. Adv. Bot. Res. 22 45–96. 10.1016/S0065-2296(08)60056-7 DOI
Wicker T., Taudien S., Houben A., Keller B., Graner A., Platzer M., et al. (2009). A whole−genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J. 59 712–722. 10.1111/j.1365-313x.2009.03911.x PubMed DOI
Wimalasekera R., Tebartz F., Scherer G. F. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 181 593–603. 10.1016/j.plantsci.2011.04.002 PubMed DOI
Wolfender J. L., Rudaz S., Hae Choi Y., Kyong Kim H. (2013). Plant metabolomics: from holistic data to relevant biomarkers. Curr. Med. Chem. 20 1056–1090. 10.2174/092986713805288932 PubMed DOI
Wu D., Shen Q., Cai S., Chen Z. H., Dai F., Zhang G. (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol. 54 1976–1988. 10.1093/pcp/pct134 PubMed DOI
Xie Y., Ling T., Han Y., Liu K., Zheng Q., Huang L., et al. (2008). Carbon monoxide enhances salt tolerance by nitric oxide−mediated maintenance of ion homeostasis and up−regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ. 31 1864–1881. 10.1111/j.1365-3040.2008.01888.x PubMed DOI
Xing Y., Jia W., Zhang J. (2008). AtMKK1 mediates ABA−induced CAT1 expression and H2O2 production via AtMPK6−coupled signaling in Arabidopsis. Plant J. 54 440–451. 10.1111/j.1365-313X.2008.03433.x PubMed DOI
Xiong L., Zhu J. K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiol. 133 29–36. 10.1104/pp.103.025395 PubMed DOI PMC
Xu C., Jiang Z., Huang B. (2011). Nitrogen deficiency-induced protein changes in immature and mature leaves of creeping bentgrass. J. Am. Soc. Hort. Sci. 136 399–407. 10.21273/JASHS.136.6.399 DOI
Xu E., Chen M., He H., Zhan C., Cheng Y., Zhang H., et al. (2017). Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. Front. Plant Sci. 7:2006. PubMed PMC
Xu J., Wang W., Sun J., Zhang Y., Ge Q., Du L., et al. (2011). Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant Soil 346 107–119. 10.1007/s11104-011-0800-4 DOI
Xu P., Liu Z., Fan X., Gao J., Zhang X., Zhang X., et al. (2013). De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Gene 525 26–34. 10.1016/j.gene.2013.04.066 PubMed DOI
Xu Q., Xu X., Zhao Y., Jiao K., Herbert S. J., Hao L. (2008). Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul. 54 249–259. 10.1007/s10725-007-9247-2 DOI
Xu Y., Gao S., Yang Y., Huang M., Cheng L., Wei Q., et al. (2013). Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:662. 10.1186/1471-2164-14-662 PubMed DOI PMC
Xuan L., Li J., Wang X., Wang C. (2020). Crosstalk between hydrogen sulfide and other signal molecules regulates plant growth and development. Int. J. Mol. Sci. 21:4593. 10.3390/ijms21134593 PubMed DOI PMC
Yadu S., Dewangan T. L., Chandrakar V., Keshavkant S. (2017). Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol. Mol. Biol. Plants 23 43–58. 10.1007/s12298-016-0394-7 PubMed DOI PMC
Yan K., Shao H. B., Shao C. H., Chen P., Zhao S., Brestic M., et al. (2013). Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Planta 325 2867–2878. 10.1007/s11738-013-1325-7 DOI
Yang T., Lv R., Li J., Lin H., Xi D. (2018). Phytochrome A and B negatively regulate salt stress tolerance of Nicotiana tobacum via ABA–jasmonic acid synergistic cross-talk. Plant Cell Physiol. 59 2381–2393. 10.1093/pcp/pcy164 PubMed DOI
Yang Y., Guo Y. (2018). Elucidating the molecular mechanisms mediating plant salt−stress responses. New Phytol. 217 523–539. 10.1111/nph.14920 PubMed DOI
Zeng L., Shannon M. C., Lesch S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agri. Water Manag. 48 191–206. 10.1016/S0378-3774(00)00146-3 DOI
Zhang J., Zhang Y., Du Y., Chen S., Tang H. (2011). Dynamic metabolomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J. Proteome Res. 10 1904–1914. 10.1021/pr101140n PubMed DOI
Zhang L., Pei Y., Wang H., Jin Z., Liu Z., Qiao Z., et al. (2015). Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. Oxidat. Med. Cell. Long. 2015:804603. 10.1155/2015/804603 PubMed DOI PMC
Zhang L., Yu Z., Jiang L., Jiang J., Luo H., Fu L. (2011). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. J. Proteomics 74 1135–1149. 10.1016/j.jprot.2011.04.012 PubMed DOI
Zhang P., Luo Q., Wang R., Xu J. (2017). Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. Scientific Rep. 7 1–11. 10.1038/s41598-017-01046-2 PubMed DOI PMC
Zhang Y., Tan J., Guo Z., Lu S., He S., Shu W., et al. (2009). Increased abscisic acid levels in transgenic tobacco over−expressing 9 cis−epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ. 32 509–519. 10.1111/j.1365-3040.2009.01945.x PubMed DOI
Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., Zhang W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224 545–555. 10.1007/s00425-006-0242-z PubMed DOI
Zhao F., Song C. P., He J., Zhu H. (2007). Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol. 145 1061–1072. 10.1104/pp.107.105882 PubMed DOI PMC
Zhao G., Zhao Y., Yu X., Kiprotich F., Han H., Guan R., et al. (2018). Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int. J. Mol. Sci. 19:912. 10.3390/ijms19071912 PubMed DOI PMC
Zhao M. G., Tian Q. Y., Zhang W. H. (2007). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 144 206–217. 10.1104/pp.107.096842 PubMed DOI PMC
Zhao Y., Hu F., Zhang X., Wei Q., Dong J., Bo C., et al. (2019). Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An’nong 591 under heat stress. BMC Plant Biol. 19:273. 10.1186/s12870-019-1878-8 PubMed DOI PMC
Zhao Z., Zhang W., Stanley B. A., Assmann S. M. (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20 3210–3226. 10.1105/tpc.108.063263 PubMed DOI PMC
Zheng C., Jiang D., Liu F., Dai T., Liu W., Jing Q., et al. (2009). Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ. Exp. Bot. 67 222–227. 10.1016/j.envexpbot.2009.05.002 DOI
Zhu J. K., Liu J., Xiong L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10 1181–1191. 10.1105/tpc.10.7.1181 PubMed DOI PMC
Zhu T., Deng X., Zhou X., Zhu L., Zou L., Li P., et al. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific Rep. 6:392. 10.1038/srep35392 PubMed DOI PMC
Zi J., Zhang J., Wang Q., Lin L., Tong W., Bai X., et al. (2012). Proteomics study of rice embryogenesis: discovery of the embryogenesis-dependent globulins. Electrophoresis 33 1129–1138. 10.1002/elps.201100398 PubMed DOI
Zörb C., Geilfus C. M., Mühling K. H., Ludwig-Müller J. (2013). The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J. Plant Physiol. 170 220–224. 10.1016/j.jplph.2012.09.012 PubMed DOI
Zörb C., Schmitt S., Mühling K. H. (2010). Proteomic changes in maize roots after short−term adjustment to saline growth conditions. Proteomics 10 4441–4449. 10.1002/pmic.201000231 PubMed DOI