Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants

. 2021 ; 12 () : 670369. [epub] 20210813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34484254

In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.

Zobrazit více v PubMed

AbdElgawad H., Zinta G., Hegab M. M., Pandey R., Asard H., Abuelsoud W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. PubMed DOI PMC

Abdi N., Holford P., Mcglasson B. (2002). Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stonefruit. DOI

Abogadallah G. M. (2010). Insights into the significance of antioxidative defense under salt stress. PubMed DOI PMC

Afroz A., Khan M. R., Ahsan N., Komatsu S. (2009). Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. PubMed DOI

Agarie S., Shimoda T., Shimizu Y., Baumann K., Sunagawa H., Kondo A., et al. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. PubMed DOI

Aghaei K., Ehsanpour A. A., Komatsu S. (2008). Proteome analysis of potato under salt stress. PubMed DOI

Ahmad P., Abdel Latef A. A., Hashem A., Abd-Allah E. F., Gucel S., Tran L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. PubMed DOI PMC

Ahmad R., Parfitt D. E., Fass J., Ogundiwin E., Dhingra A., Gradziel T. M., et al. (2011). Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. PubMed DOI PMC

Al-Tamimi N., Brien C., Oakey H., Berger B., Saade S., Ho Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. PubMed DOI PMC

Amara I., Odena A., Oliveira E., Moreno A., Masmoudi K., Pages M., et al. (2012). Insights into Maize LEA proteins: from proteomics to functional approaches. PubMed DOI

Amiour N., Merlino M., Leroy P., Branlard G. (2002). Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels. PubMed DOI

Amirjani M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. DOI

Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. PubMed DOI

Arbona V., Manzi M., Ollas D. C., Gómez-Cadenas A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. PubMed DOI PMC

Arc E., Sechet J., Corbineau F., Rajjou L., Marion-Poll A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. PubMed DOI PMC

Arrivault S., Guenther M., Ivakov A., Feil R., Vosloh D., Van Dongen J. T., et al. (2009). Use of reverse−phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. PubMed DOI

Arshad M., Gruber M. Y., Wall K., Hannoufa A. (2017). An insight into microRNA156 role in salinity stress responses of alfalfa. PubMed DOI PMC

Atieno J., Li Y., Langridge P., Dowling K., Brien C., Berger B., et al. (2017). Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. PubMed DOI PMC

Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. PubMed DOI PMC

Babaei S., Niknam V., Behmanesh M. (2021). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). DOI

Bandehagh A., Salekdeh G. H., Toorchi M., Mohammadi A., Komatsu S. (2011). Comparative proteomic analysis of canola leaves under salinity stress. PubMed DOI

Bargaz A., Nassar R. M. A., Rady M. M., Gaballah M. S., Thompson S. M., Brestic M., et al. (2016). Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P-Efficiency. DOI

Batistič O., Kudla J. (2009). Plant calcineurin B-like proteins and their interacting protein kinases. PubMed DOI

Baxter I. (2009). Ionomics: studying the social network of mineral nutrients. PubMed DOI PMC

Becker J. S., Becker J. S. (2010). PubMed

Berger B., De Regt B., Tester M. (2012). PubMed

Bialecka B., Kepczynski J. (2009). Effect of ethephon and gibberellin A3 on Amaranthus caudatus seed germination and alpha-and beta-amylase activity under salinity stress.

Borrelli G. M., Fragasso M., Nigro F., Platani C., Papa R., Beleggia R., et al. (2018). Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. PubMed DOI

Bose J., Rodrigo-Moreno A., Shabala S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. PubMed DOI

Bouallègue A., Souissi F., Nouairi I., Souibgui M., Abbes Z., Mhadhbi H. (2017). Salicylic acid and hydrogen peroxide pretreatments alleviate salt stress in faba bean (Vicia faba) seeds during germination. DOI

Boudsocq M., Sheen J. (2009).

Campbell M. T., Knecht A. C., Berger B., Brien C. J., Wang D., Walia H. (2015). Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. PubMed DOI PMC

Campos F. V., Oliveira J. A., Pereira M. G., Farnese F. S. (2019). Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. PubMed DOI

Carillo P., Annunziata M. G., Pontecorvo G., Fuggi A., Woodrow P. (2011). Salinity stress and salt tolerance.

Chassaigne H., Nørgaard J. V., Van Hengel A. J. (2007). Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). PubMed DOI

Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta, et al. (2011). Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. PubMed DOI

Chauhan J., Singhal R. K., Chaudhary S., Sodani R. (2017). Calmodulin in Plant Responses to Abiotic Stresses and Signalling. DOI

Chen F., Fang P., Peng Y., Zeng W., Zhao X., Ding Y., et al. (2019). Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. PubMed DOI PMC

Chen F., Fang P., Zeng W., Ding Y., Zhuang Z., Peng Y. (2020). Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PubMed DOI PMC

Chen S., Gollop N., Heuer B. (2009). Proteomic analysis of salt-stressed tomato (Solanumly copersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. PubMed DOI PMC

Chen S., Jia H., Wang X., Shi C., Wang X., Ma P., et al. (2020). Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2. 6 in guard cells. PubMed DOI

Chen S., Jiang J., Li H., Liu G. (2012). The salt-responsive transcriptome of Populus simonii× Populus nigra via DGE. PubMed DOI

Che-Othman M. H., Jacoby R. P., Millar A. H., Taylor N. L. (2019). Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. PubMed DOI

Chini A., Gimenez-Ibanez S., Goossens A., Solano R. (2016). Redundancy and specificity in jasmonate signalling. PubMed DOI

Chitteti B. R., Peng Z. (2007). Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. PubMed DOI

Choi W. G., Toyota M., Kim S. H., Hilleary R., Gilroy S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. PubMed DOI PMC

Christou A., Filippou P., Manganaris G. A., Fotopoulos V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. PubMed DOI PMC

Coll N. S., Epple P., Dangl J. L. (2011). Programmed cell death in the plant immune system. PubMed DOI PMC

Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., et al. (2016). A survey of best practices for RNA-seq data analysis. PubMed DOI PMC

Corpas F. J. (2019). Hydrogen sulfide: a new warrior against abiotic stress. PubMed DOI

Corpas F. J., Palma J. M. (2020). H2S signaling in plants and applications in agriculture. PubMed DOI PMC

Corpas F. J., Barroso J. B., Carreras A., Quirós M., León A. M., Romero-Puertas M. C., et al. (2004). Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. PubMed DOI PMC

Corpas F. J., Barroso J. B., Carreras A., Valderrama R., Palma J. M., León A. M., et al. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. PubMed DOI

Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., et al. (2008). Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. PubMed DOI

Da Silva C. J., Fontes E. P. B., Modolo L. V. (2017). Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. PubMed DOI

da-Silva C. J., Mollica D. C., Vicente M. H., Peres L. E., Modolo L. V. (2018). NO, hydrogen sulfide does not come first during tomato response to high salinity. PubMed DOI

Day I. S., Reddy V. S., Ali G. S., Reddy A. S. N. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. PubMed DOI PMC

De Grauwe L., Vriezen W. H., Bertrand S., Phillips A., Vidal A. M., Hedden P., et al. (2007). Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. PubMed DOI

DeFalco T. A., Bender K. W., Snedden W. A. (2010). Breaking the code: Ca2+ sensors in plant signalling. PubMed DOI

Deinlein U., Stephan A. B., Horie T., Luo W., Xu G., Schroeder J. I. (2014). Plant salt-tolerance mechanisms. PubMed DOI PMC

Deng G., Zhou L., Wang Y., Zhang G., Chen X. (2020). Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. PubMed DOI

Depuydt S., Hardtke C. S. (2011). Hormone signalling crosstalk in plant growth regulation. PubMed DOI

Devoto A., Turner J. G. (2003). Regulation of jasmonate−mediated plant responses in Arabidopsis. PubMed DOI PMC

D’Hont A., Denoeud F., Aury J. M., Baurens F. C., Carreel F., Garsmeur O., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. PubMed DOI

Di Carli M., Zamboni A., Pé M. E., Pezzotti M., Lilley K. S., Benvenuto E., et al. (2011). Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering. PubMed DOI

Dilnur T., Peng Z., Pan Z., Palanga K. K., Jia Y., Gong W., et al. (2019). Association analysis of salt tolerance in Asiatic cotton (Gossypium arboretum) with SNP markers. PubMed DOI PMC

Dinler B. S., Antoniou C., Fotopoulos V. (2014). Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. PubMed DOI

Do P. T., Drechsel O., Heyer A. G., Hincha D. K., Zuther E. (2014). Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. PubMed DOI PMC

Domingos P., Prado A. M., Wong A., Gehring C., Feijo J. A. (2015). Nitric oxide: a multitasked signaling gas in plants. PubMed DOI

Dong F., Simon J., Rienks M., Lindermayr C., Rennenberg H. (2015). Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source. PubMed DOI

Dos Santos V. S., Macedo F. A., do Vale J. S., Silva D. B., Carollo C. A. (2017). Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato. DOI

Du C. X., Fan H. F., Guo S. R., Tezuka T., Li J. (2010). Proteomic analysis of cucumber seedling roots subjected to salt stress. PubMed DOI

Duque A. S., de Almeida A. M., da Silva A. B., da Silva J. M., Farinha A. P., Santos D., et al. (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive.

Ekman D. R., Lorenz W. W., Przybyla A. E., Wolfe N. L., Dean J. F. (2003). SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2, 4, 6-trinitrotoluene. PubMed DOI PMC

El-Metwally S., Ouda O. M., Helmy M. (2014).

Fan H. F., Du C. X., Guo S. R. (2012). Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. DOI

Fancy N. N., Bahlmann A. K., Loake G. J. (2017). Nitric oxide function in plant abiotic stress. PubMed DOI

Farkhondeh R., Nabizadeh E., Jalilnezhad N. (2012). Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars.

Farmer E. E., Mueller M. J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. PubMed DOI

Fatma M., Masood A., Per T. S., Khan N. A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. PubMed DOI PMC

Flowers T. J., Colmer T. D. (2008). Salinity tolerance in halophytes. PubMed DOI

Foo E., Ross J. J., Davies N. W., Reid J. B., Weller J. L. (2006). A role for ethylene in the phytochrome−mediated control of vegetative development. PubMed DOI

Fotopoulos V., Sanmartin M., Kanellis A. K. (2006). Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. PubMed DOI

Furbank R. T., Tester M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. PubMed DOI

Galant A., Koester R. P., Ainsworth E. A., Hicks L. M., Jez J. M. (2012). From climate change to molecular response: redox proteomics of ozone-induced responses in soybean. PubMed DOI

Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V. M., et al. (2012). The genome of melon (Cucumis melo L.). PubMed DOI PMC

Garg N., Singla P. (2016). Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. DOI

Garufi A., Visconti S., Camoni L., Aducci P. (2007). Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. PubMed DOI

Gavaghan C. L., Li J. V., Hadfield S. T., Hole S., Nicholson J. K., Wilson I. D., et al. (2011). Application of NMR−based metabolomics to the investigation of salt stress in maize (Zea mays). PubMed DOI

Gayen D., Barua P., Lande N. V., Varshney S., Sengupta S., Chakraborty S., et al. (2019). Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. DOI

Gémes K., Poór P., Horváth E., Kolbert Z., Szopkó D., Szepesi Á, et al. (2011). Cross−talk between salicylic acid and NaCl−generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. PubMed DOI

Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PubMed DOI

Gilliham M., Able J. A., Roy S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. PubMed DOI

Gilroy S., Suzuki N., Miller G., Choi W. G., Toyota M., Devireddy A. R., et al. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. PubMed DOI

Gniazdowska A., Dobrzyńska U., Babańczyk T., Bogatek R. (2007). Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. PubMed DOI

Gniazdowska A., Krasuska U., Bogatek R. (2010). Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. PubMed DOI

Granier C., Aguirrezabal L., Chenu K., Cookson S. J., Dauzat M., Hamard P., et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. PubMed DOI

Guan R., Qu Y., Guo Y., Yu L., Liu Y., Jiang J., et al. (2014). Salinity tolerance in soybean is modulated by natural variation in G m SALT 3. PubMed DOI

Guo H., Zhu N., Deyholos M. K., Liu J., Zhang X., Dong J. (2015). Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. PubMed DOI

Guo R., Yang Z., Li F., Yan C., Zhong X., Liu Q., et al. (2015). Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. PubMed DOI PMC

Gupta B., Huang B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. PubMed DOI PMC

Gupta K., Dey A., Gupta B. (2013). Plant polyamines in abiotic stress responses. DOI

Gupta P., Srivastava S., Seth C. S. (2017). 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. DOI

Hairmansis A., Berger B., Tester M., Roy S. J. (2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. PubMed DOI PMC

Hajheidari M., Abdollahian-Noghabi M., Askari H., Heidari M., Sadeghian S. Y., Ober E. S., et al. (2005). Proteome analysis of sugar beet leaves under drought stress. PubMed DOI

Hajihashemi S., Skalicky M., Brestic M., Pavla V. (2020). Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. PubMed DOI

Hancock J. T., Whiteman M. (2016). Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. PubMed DOI

Harper J. F., Harmon A. (2005). Plants, symbiosis and parasites: a calcium signalling connection. PubMed DOI

Hasanuzzaman M., Nahar K., Fujita M. (2013). “Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages,” in DOI

Hasanuzzaman M., Oku H., Nahar K., Bhuyan M. B., Al Mahmud J., Baluska F., et al. (2018). Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. DOI

Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. (2000). Plant cellular and molecular responses to high salinity. PubMed

Herndl A., Marzban G., Kolarich D., Hahn R., Boscia D., Hemmer W., et al. (2007). Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. PubMed DOI

Hirschi K. D. (2003). Strike while the ionome is hot: making the most of plant genomic advances. PubMed DOI

Ho W. W. H., Hill C. B., Doblin M. S., Shelden M. C., van de Meene A., Rupasinghe T., et al. (2020). Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms. PubMed DOI PMC

Hrdlickova R., Toloue M., Tian B. (2017). RNA−Seq methods for transcriptome analysis. PubMed DOI PMC

Hsu S. Y., Kao C. H. (2003). Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves.

Huang D., Huo J., Liao W. (2020). Hydrogen Sulfide: Roles in Plant Abiotic Stress Response and Crosstalk with Other Signals. PubMed DOI

Huang L., Zeng A., Chen P., Wu C., Wang D., Wen Z. (2018). Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]. DOI

Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., et al. (2009). The genome of the cucumber, Cucumis sativus L. PubMed

Huang X. Y., Salt D. E. (2016). Plant ionomics: from elemental profiling to environmental adaptation. PubMed DOI

Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. PubMed PMC

Hussain S., Shaukat M., Ashraf M., Zhu C., Jin Q., Zhang J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops.

Iqbal N., Masood A., Khan N. A. (2012). DOI

Ishitani M., Xiong L., Stevenson B., Zhu J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. PubMed DOI PMC

Jacoby R. P., Millar A. H., Taylor N. L. (2010). Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. PubMed DOI

Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. PubMed DOI

Jain S., Srivastava S., Sarin N. B., Kav N. N. (2006). Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. PubMed DOI

Jajic I., Sarna T., Strzalka K. (2015). Senescence, stress, and reactive oxygen species. PubMed DOI PMC

Jamil A., Riaz S., Ashraf M., Foolad M. R. (2011). Gene expression profiling of plants under salt stress. DOI

Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu, et al. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. PubMed DOI PMC

Jauregui I., Aroca R., Garnica M., Zamarreño ÁM., García−Mina J. M., Serret M. D., et al. (2015). Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. PubMed DOI

Jha U. C., Bohra A., Jha R., Parida S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. PubMed DOI

Ji H., Pardo J. M., Batelli G., Van Oosten M. J., Bressan R. A., Li X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. PubMed DOI

Ji W., Cong R., Li S., Li R., Qin Z., Li Y., et al. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. PubMed DOI PMC

Jiao Y., Bai Z., Xu J., Zhao M., Khan Y., Hu Y., et al. (2018). Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots. PubMed DOI

Jogaiah S., Govind S. R., Tran L. S. P. (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. PubMed DOI

Kader M. A., Lindberg S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. PubMed DOI PMC

Kalhor M. S., Aliniaeifard S., Seif M., Asayesh E. J., Bernard F., Hassani B., et al. (2018). Enhanced salt tolerance and photosynthetic performance: Implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. PubMed DOI

Kalluri U. C., Hurst G. B., Lankford P. K., Ranjan P., Pelletier D. A. (2009). Shotgun proteome profile of Populus developing xylem. PubMed DOI

Kärkönen A., Kuchitsu K. (2015). Reactive oxygen species in cell wall metabolism and development in plants. PubMed DOI

Kaul S., Koo H. L., Jenkins J., Rizzo M., Rooney T., Tallon L. J., et al. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. PubMed DOI

Kavas M., Baloğlu M. C., Atabay E. S., Ziplar U. T., Das̨gan H. Y., Ünver T. (2016). Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. PubMed DOI

Kaya C., Higgs D., Ashraf M., Alyemeni M. N., Ahmad P. (2020). Integrative roles of nitric oxide and hydrogen sulfide in melatonin−induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. PubMed DOI

Keshet Y., Seger R. (2010). The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. PubMed DOI

Khan A., Ahmad I., Shah A., Ahmad F., Ghani A., Nawaz M., et al. (2013). Amelioration of salinity stress in wheat (Triticum aestivum L) by foliar application of phosphorus. DOI

Khan M. N., Siddiqui M. H., Mohammad F., Naeem M. (2012). Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. PubMed DOI

Khan M. N., Siddiqui M. H., Mukherjee S., Alamri S., Al-Amri A. A., Alsubaie Q. D., et al. (2020). Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. PubMed DOI

Khan M. S. (2011). Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: present and future challenges. DOI

Kodela R., Chattopadhyay M., Kashfi K. (2012). NOSH-aspirin: a novel nitric oxide–hydrogen sulfide-releasing hybrid: a new class of anti-inflammatory pharmaceuticals. PubMed DOI PMC

Kong X., Wang T., Li W., Tang W., Zhang D., Dong H. (2016). Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). DOI

Kreszies T., Shellakkutti N., Osthoff A., Yu P., Baldauf J. A., Zeisler−Diehl V. V. (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. PubMed DOI PMC

Kudla J., Batistič O., Hashimoto K. (2010). Calcium signals: the lead currency of plant information processing. PubMed DOI PMC

Kumar V., Singh A., Mithra S. A., Krishnamurthy S. L., Parida S. K., Jain S., et al. (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). PubMed DOI PMC

Kumari A., Das P., Parida A. K., Agarwal P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. PubMed DOI PMC

Kurusu T., Kuchitsu K., Tada Y. (2015). Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. PubMed DOI PMC

Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., et al. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS−dependent ABA signaling in Arabidopsis. PubMed DOI PMC

Lakra N., Kaur C., Singla-Pareek S. L., Pareek A. (2019). Mapping the ‘early salinity response’triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. PubMed DOI PMC

Lamattina L., García-Mata C., Graziano M., Pagnussat G. (2003). Nitric oxide: the versatility of an extensive signal molecule. PubMed DOI

Lamotte O., Courtois C., Dobrowolska G., Besson A., Pugin A., Wendehenne D. (2006). Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. PubMed DOI

Lapopin L., Gianinazzi-Pearson V., Franken P. (1999). Comparative differential RNA display analysis of arbuscular mycorrhiza in Pisum sativum wild type and a mutant defective in late stage development. PubMed

Läuchli A., Grattan S. R. (2007).

Lee-Parsons C. W., Ertürk S. (2005). Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca 2+ level. PubMed DOI

Leisner C. P., Yendrek C. R., Ainsworth E. A. (2017). Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. PubMed DOI PMC

Leterrier M., Chaki M., Airaki M., Valderrama R., Palma J. M., Barroso J. B., et al. (2011). Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. PubMed DOI PMC

Leubner-Metzger G., Petruzzelli L., Waldvogel R., Vögeli-Lange R., Meins F. (1998). Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1, 3-glucanase during tobacco seed germination. PubMed DOI

Li H., Rasheed A., Hickey L. T., He Z. (2018). Fast-forwarding genetic gain. PubMed DOI

Li J., Jia H., Wang J., Cao Q., Wen Z. (2014). Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. PubMed DOI

Li L., Wang X., Stolc V., Li X., Zhang D., Su N., et al. (2006). Genome-wide transcription analyses in rice using tiling microarrays. PubMed DOI

Li P., Cao W., Fang H., Xu S., Yin S., Zhang Y., et al. (2017). Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. PubMed DOI PMC

Li T. T., Li Z. R., Hu K. D., Hu L. Y., Chen X. Y., Li, et al. (2017). Hydrogen sulfide alleviates kiwifruit ripening and senescence by antagonizing effect of ethylene. DOI

Li X., Jiang H., Liu F., Cai J., Dai T., Cao W., et al. (2013). Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. DOI

Li Z. G., Min X., Zhou Z. H. (2016). Hydrogen sulfide: a signal molecule in plant cross-adaptation. PubMed DOI PMC

Li Z. G., Yi X. Y., Li Y. T. (2014). Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. DOI

Li Z., Xu J., Gao Y., Wang C., Guo G., Luo Y., et al. (2017). The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. PubMed DOI PMC

Lin Y., Yang L., Paul M., Zu Y., Tang Z. (2013). Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. PubMed DOI

Lisjak M., Teklic T., Wilson I. D., Whiteman M., Hancock J. T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? PubMed DOI

Liu D., Li J., Li Z., Pei Y. (2020). Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). PubMed DOI PMC

Liu J. H., Nada K., Honda C., Kitashiba H., Wen X. P., Pang X. M., et al. (2006). Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. PubMed DOI

Liu L., Nakamura Y., Taliman N. A., Sabagh A. E., Moghaieb R. E., Saneoka H. (2020). Differences in the growth and physiological responses of the leaves of Peucedanum japonicum and Hordeum vulgare exposed to salinity. DOI

Liu X., Chen J., Wang G. H., Wang W. H., Shen Z. J., Luo M. R., et al. (2016). Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. DOI

Liu Y., Zhou J., White K. P. (2014). RNA-seq differential expression studies: more sequence or more replication? PubMed DOI PMC

Lu S., Su W., Li H., Guo Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2-and NO-induced antioxidant enzyme activities. PubMed DOI

Lu Y., Lam H., Pi E., Zhan Q., Tsai S., Wang C., et al. (2013a). Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. PubMed DOI

Lu Y., Li N., Sun J., Hou P., Jing X., Zhu H., et al. (2013b). Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. PubMed DOI

Luo M., Zhao Y., Wang Y., Shi Z., Zhang P., Zhang Y., et al. (2018). Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. PubMed DOI

Ma D., Ding H., Wang C., Qin H., Han Q., Hou J., et al. (2016). Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PubMed DOI PMC

Ma N. L., Lah W. A. C., Kadir N. A., Mustaqim M., Rahmat Z., Ahmad A., et al. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PubMed DOI PMC

Ma Y., Zhang W., Niu J., Ren Y., Zhang F. (2019). Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. PubMed DOI

Maathuis F. J. (2006). The role of monovalent cation transporters in plant responses to salinity. PubMed DOI

Mahajan S., Tuteja N. (2005). Cold, salinity and drought stresses: an overview. PubMed DOI

Manaa A., Ben Ahmed H., Valot B., Bouchet J. P., Aschi-Smiti S., Causse M., et al. (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. PubMed DOI

Mansuri R. M., Shobbar Z. S., Jelodar N. B., Ghaffari M., Mohammadi S. M., Daryani P. (2020). Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. PubMed PMC

Marco F., Alcázar R., Tiburcio A. F., Carrasco P. (2011). Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. PubMed DOI PMC

Martínez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J. K., Pardo J. M., et al. (2007). Conservation of the salt overly sensitive pathway in rice. PubMed DOI PMC

Matsumura H., Nirasawa S., Terauchi R. (1999). Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). PubMed DOI

McAinsh M. R., Pittman J. K. (2009). Shaping the calcium signature. PubMed DOI

Mehta S., James D., Reddy M. K. (2019). DOI

Meng R., Saade S., Kurtek S., Berger B., Brien C., Pillen K., et al. (2017). Growth curve registration for evaluating salinity tolerance in barley. PubMed PMC

Ming R., Hou S., Feng Y., Yu Q., Dionne-Laporte A., Saw J. H., et al. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.). PubMed PMC

Mishra S., Singh B., Misra P., Rai V., Singh N. K. (2016a). Haplotype distribution and association of candidate genes with salt tolerance in Indian wild rice germplasm. PubMed DOI

Mishra S., Singh B., Panda K., Singh B. P., Singh N., Misra P., et al. (2016b). Association of SNP haplotypes of HKT family genes with salt tolerance in Indian wild rice germplasm. PubMed PMC

Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. PubMed DOI

Mittler R., Vanderauwera S., Suzuki N., Miller G. A. D., Tognetti V. B., Vandepoele K., et al. (2011). ROS signaling: the new wave? PubMed DOI

Mockaitis K., Howell S. H. (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. PubMed DOI

Molassiotis A., Fotopoulos V. (2011). Oxidative and nitrosative signaling in plants: two branches in the same tree? PubMed DOI PMC

Molassiotis A., Tanou G., Diamantidis G. (2010). NO says more than ‘YES’to salt tolerance: salt priming and systemic nitric oxide signaling in plants. PubMed DOI PMC

Molina C., Rotter B., Horres R., Udupa S. M., Besser B., Bellarmino L., et al. (2008). SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. PubMed DOI PMC

Molina C., Zaman-Allah M., Khan F., Fatnassi N., Horres R., Rotter B., et al. (2011). The salt-responsive transcriptome of chickpea roots and nodules via deep SuperSAGE. PubMed DOI PMC

Monshausen G. B., Bibikova T. N., Weisenseel M. H., Gilroy S. (2009). Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. PubMed DOI PMC

Moreau M., Lee G. I., Wang Y., Crane B. R., Klessig D. F. (2008). AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. PubMed DOI PMC

Mosa K. A., Ismail A., Helmy M. (2017). DOI

Mostofa M. G., Rahman A., Ansary M. M. U., Watanabe A., Fujita M., Tran L. S. P. (2015a). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. PubMed DOI PMC

Mostofa M. G., Saegusa D., Fujita M., Tran L. S. P. (2015b). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. PubMed DOI PMC

Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre−prophase band, phragmoplast, trans−Golgi network and plasma membrane. PubMed DOI

Munns R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. DOI

Munns R. (2005). Genes and salt tolerance: bringing them together. PubMed DOI

Munns R., Tester M. (2008). Mechanisms of salinity tolerance. PubMed DOI

Mwando E., Han Y., Angessa T. T., Zhou G., Hill C. B., Zhang X. Q., et al. (2020). Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). PubMed DOI PMC

Nakagami H., Pitzschke A., Hirt H. (2005). Emerging MAP kinase pathways in plant stress signalling. PubMed DOI

Negrão S., Cecília Almadanim M., Pires I. S., Abreu I. A., Maroco J., Courtois B., et al. (2013). New allelic variants found in key rice salt−tolerance genes: an association study. PubMed DOI

Negrão S., Schmöckel S. M., Tester M. (2017). Evaluating physiological responses of plants to salinity stress. PubMed DOI PMC

Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. PubMed DOI

Ngara R., Ndimba R., Borch-Jensen J., Jensen O. N., Ndimba B. (2012). Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. PubMed DOI

Ni J., Yang X., Zhu J., Liu Z., Ni Y., Wu H., et al. (2015). Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. DOI

Noctor G., Reichheld J. P., Foyer C. H. (2018). PubMed

Olías R., Eljakaoui Z., Pardo J. M., Belver A. (2009). The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. PubMed DOI PMC

Ouyang S., He S., Liu P., Zhang W., Zhang J., Chen S. (2011). The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). PubMed DOI

Pan J., Li Z., Dai S., Ding H., Wang Q., Li X., et al. (2020). Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. PubMed DOI PMC

Paranhos A. (2014). Interplay of calcium, cAMP and PKA in flavonoid accumulation by cell cultures of Hypericum androsaemum L. DOI

Parida A. K., Panda A., Rangani J. (2018). DOI

Parihar P., Singh S., Singh R., Singh V. P., Prasad S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. PubMed DOI

Paterson A. H., Bowers J. E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. PubMed

Pathak M. R., Teixeira, da Silva J. A., Wani S. H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. PubMed DOI PMC

Paul B. D., Snyder S. H. (2012). H 2 S signalling through protein sulfhydration and beyond. PubMed DOI

Pedreschi R., Hertog M., Robben J., Noben J. P., Nicolai B. (2008). Physiological implications of controlled atmosphere storage of ‘Conference’ pears (Pyrus communis L.): a proteomic approach. DOI

Pei Y., Jin Z., Liu Z., Fang H., Zhang L., Hao X., et al. (2018). Gasotransmitters in Plants. DOI

Peng Z., He S., Gong W., Sun J., Pan Z., Xu F., et al. (2014). Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. PubMed DOI PMC

Peng Z., Wang M., Li F., Lv H., Li C., Xia G. (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. PubMed DOI PMC

Pennisi E. (2008). Corn genomics pops wide open. PubMed DOI

Pennisi E. (2013). The CRISPR craze. PubMed DOI

Pessarakli M., Szabolcs I. (1999). Soil salinity and sodicity as particular plant/crop stress factors.

Poór P., Tari I. (2011). Ethylene-regulated reactive oxygen species and nitric oxide under salt stress in tomato cell suspension culture.

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. PubMed DOI

Poór P., Szopkó D., Tari I. (2012). Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. DOI

Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. PubMed DOI

Pottosin I., Shabala S. (2014). Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. PubMed DOI PMC

Pottosin I., Velarde-Buendía A. M., Bose J., Zepeda-Jazo I., Shabala S., Dobrovinskaya O. (2014). Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. PubMed DOI

Pottosin I., Velarde-Buendía A. M., Zepeda-Jazo I., Dobrovinskaya O., Shabala S. (2012). Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. PubMed DOI PMC

Prakash V., Singh V. P., Tripathi D. K., Sharma S., Corpas F. J. (2019). Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. DOI

Qadir M., Qureshi A. S., Cheraghi S. A. M. (2008). Extent and characterisation of salt−affected soils in Iran and strategies for their amelioration and management. DOI

Qiao W., Li C., Fan L. M. (2014). Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. DOI

Qiao W., Xiao S., Yu L., Fan L. M. (2009). Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salt tolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. DOI

Quintero F. J., Ohta M., Shi H., Zhu J. K., Pardo J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. PubMed DOI PMC

Ramalingam A., Kudapa H., Pazhamala L. T., Weckwerth W., Varshney R. K. (2015). Proteomics and metabolomics: two emerging areas for legume improvement. PubMed DOI PMC

Raney J. A. (2012). Transcriptome analysis of drought induced stress in Chenopodium quinoa. DOI

Rao M. V., Paliyath G., Ormrod D. P., Murr D. P., Watkins C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). PubMed DOI PMC

Rasel M., Tahjib-Ul-Arif M., Hossian M. A. (2020). Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism multidimensional roles in salt-stressed plants. DOI

Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. PubMed DOI PMC

Ravelombola W., Shi A., Weng Y., Mou B., Motes D., Clark J., et al. (2018). Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. PubMed DOI

Razavizadeh R., Ehsanpour A. A., Ahsan N., Komatsu S. (2009). Proteome analysis of tobacco leaves under salt stress. PubMed DOI

Rea P. A. (2003). Ion genomics. PubMed

Rouphael Y., Raimondi G., Lucini L., Carillo P., Kyriacou M. C., Colla G., et al. (2018). Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. PubMed PMC

Sabagh A. E., Hossain A., Islam S., Barutcular C., Hussain S., Hasanuzzaman M., et al. (2019). Drought and salinity stresses in barley: consequences and mitigation strategies. DOI

Sahi C., Singh A., Kumar K., Blumwald E., Grover A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. PubMed DOI

Salt D. E., Baxter I., Lahner B. (2008). Ionomics and the study of the plant ionome. PubMed DOI

Sanadhya P., Agarwal P., Agarwal P. K. (2015). Ion homeostasis in a salt-secreting halophytic grass. PubMed DOI PMC

Sanchez D. H., Pieckenstain F. L., Escaray F., Erban A., Kraemer U. T. E., Udvardi M. K., et al. (2011). Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre−adaptation hypothesis. PubMed DOI

Sanchez D. H., Siahpoosh M. R., Roessner U., Udvardi M., Kopka J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. PubMed

Santolini J., André F., Jeandroz S., Wendehenne D. (2017). Nitric oxide synthase in plants: where do we stand? PubMed DOI

Sasabe M., Machida Y. (2012). Regulation of organization and function of microtubules by the mitogen−activated protein kinase cascade during plant cytokinesis. PubMed DOI

Scherling C., Roscher C., Giavalisco P., Schulze E. D., Weckwerth W. (2010). Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PubMed DOI PMC

Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. PubMed

Schnable P. S., Ware D., Fulton R. S., Stein J. C., Wei F., Pasternak S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. PubMed

Schulte D., Close T. J., Graner A., Langridge P., Matsumoto T., Muehlbauer G., et al. (2009). The international barley sequencing consortium—at the threshold of efficient access to the barley genome. PubMed DOI PMC

Seifikalhor M., Aliniaeifard S., Hassani B., Niknam V., Lastochkina O. (2019). Diverse role of γ-aminobutyric acid in dynamic plant cell responses. PubMed DOI

Serrano R., Rodriguez-Navarro A. (2001). Ion homeostasis during salt stress in plants. PubMed DOI

Shabala S., Mackay A. (2011). Ion transport in halophytes. DOI

Shabala S., Newman I. (2000). Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall. DOI

Shabala S., Shabala L., Barcelo J., Poschenrieder C. (2014). Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. PubMed

Shelden M. C., Roessner U. (2013). Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. PubMed PMC

Shelden M. C., Dias D. A., Jayasinghe N. S., Bacic A., Roessner U. (2016). Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. PubMed DOI PMC

Shen Q., Fu L., Dai F., Jiang L., Zhang G., Wu D. (2016). Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. PubMed DOI PMC

Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. (2019). Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). PubMed DOI

Sheokand S., Bhankar V., Sawhney V. (2010). Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. DOI

Shi H., Chan Z. (2014). Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. PubMed DOI

Shi H., Quintero F. J., Pardo J. M., Zhu J. K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. PubMed DOI PMC

Shulaev V., Sargent D. J., Crowhurst R. N., Mockler T. C., Folkerts O., et al. (2011). The genome of woodland strawberry (Fragaria vesca). PubMed PMC

Siddiqui M. H., Mohammad F., Khan M. M. A., Al-Whaibi M. H. (2012). Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. PubMed DOI

Simaei M., Khavarinejad R. A., Saadatmand S., Bernard F., Fahimi H. (2011). Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. DOI

Singh N. K., Mahato A. K., Sharma N., Gaikwad K., Srivastava M., Tiwari K., et al. (2014). “A draft genome of the king of fruit, mango (Mangifera indica L.),”in

Singh R. P., Runthala A., Khan S., Jha P. N. (2017). Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to PubMed DOI PMC

Singhal R. K., Sodani R., Chauhan J., Sharma M. K., Yashu B. R. (2017). Physiological Adaptation and Tolerance Mechanism of Rice (Oryza sativa L.) in Multiple Abiotic Stresses. DOI

Smékalová V., Doskočilová A., Komis G., Šamaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. PubMed DOI

Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A. A., Jazii F. R., Motamed N., et al. (2010). Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. PubMed DOI PMC

Soda N., Wallace S., Karan R. (2015). Omics study for abiotic stress responses in plants.

Steffens B., Wang J., Sauter M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. PubMed DOI

Su H., Balderas E., Vera-Estrella R., Golldack D., Quigley F., Zhao C., et al. (2003). Expression of the cation transporter McHKT1 in a halophyte. PubMed

Suarez M. C., Bernal A., Gutierrez J., Tohme J., Fregene M. (2000). Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). PubMed DOI

Subudhi P. K., Shankar R., Jain M. (2020). Whole genome sequence analysis of rice genotypes with contrasting response to salinity stress. PubMed PMC

Süle A., Vanrobaeys F., Hajós G., Van Beeumen J., Devreese B. (2004). Proteomic analysis of small heat shock protein isoforms in barley shoots. PubMed DOI

Sun C., Lu L., Yu Y., Liu L., Hu Y., Ye, et al. (2016). Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. PubMed DOI PMC

Sun J., Li L., Liu M., Wang M., Ding M., Deng S., et al. (2010). Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. DOI

Suzuki N., Koussevitzky S. H. A. I., Mittler R. O. N., Miller G. A. D. (2012). ROS and redox signalling in the response of plants to abiotic stress. PubMed DOI

Svensson J. T., Crosatti C., Campoli C., Bassi R., Stanca A. M., Close T. J., et al. (2006). Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. PubMed DOI PMC

Swami A. K., Alam S. I., Sengupta N., Sarin R. (2011). Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. DOI

Szepesi Á, Csiszár J., Gémes K., Horváth E., Horváth F., Simon M. L., et al. (2009). Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. PubMed DOI

Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. (2008). Local positive feedback regulation determines cell shape in root hair cells. PubMed DOI

Tang R. J., Liu H., Bao Y., Lv Q. D., Yang L., Zhang H. X. (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. PubMed DOI

Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., et al. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. PubMed DOI

Tena G., Boudsocq M., Sheen J. (2011). Protein kinase signaling networks in plant innate immunity. PubMed DOI PMC

Thitisaksakul M., Tananuwong K., Shoemaker C. F., Chun A., Tanadul O. U. M., Labavitch J. M., et al. (2015). Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. PubMed DOI

Tracy F. E., Gilliham M., Dodd A. N., Webb A. A., Tester M. (2008). NaCl−induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. PubMed DOI

Türkan I., Demiral T. (2009). Recent developments in understanding salinity tolerance. DOI

Tuskan G. A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). PubMed

Tuteja N. (2007). Mechanisms of high salinity tolerance in plants. PubMed DOI

Uchida A., Jagendorf A. T., Hibino T., Takabe T., Takabe T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. DOI

Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanadian M. (2020a). Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyi Boiss. PubMed DOI

Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanadian M., Talebi M., Ghanati F. (2020c). Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. PubMed DOI

Vafadar F., Amooaghaie R., Ehsanzadeh P., Ghanati F., Sajedi R. H. (2020b). Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. PubMed DOI

Velarde-Buendía A. M., Shabala S., Cvikrova M., Dobrovinskaya O., Pottosin I. (2012). Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. PubMed DOI

Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A., Kalyanaraman A., et al. (2010). The genome of the domesticated apple (Malus× domestica Borkh.). PubMed

Vighi I. L., Crizel R. L., Perin E. C., Rombaldi C. V., Galli V. (2019). Crosstalk during fruit ripening and stress response among abscisic acid, calcium-dependent protein kinase and phenylpropanoid. DOI

Vu W. T., Chang P. L., Moriuchi K. S., Friesen M. L. (2015). Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. PubMed DOI PMC

Wahid A., Perveen M., Gelani S., Basra S. M. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. PubMed DOI

Wakeel A., Asif A. R., Pitann B., Schubert S. (2011). Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. PubMed DOI

Wang H., Liang X., Wan Q., Wang X., Bi Y. (2009). Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. PubMed DOI

Wang H., Tang X., Wang H., Shao H. B. (2015). Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. PubMed DOI PMC

Wang Y., Li L., Cui W., Xu S., Shen W., Wang R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. DOI

Webb A. A., McAinsh M. R., Taylor J. E., Hetherington A. M. (1996). Calcium ions as intracellular second messengers in higher plants. DOI

Wicker T., Taudien S., Houben A., Keller B., Graner A., Platzer M., et al. (2009). A whole−genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. PubMed DOI

Wimalasekera R., Tebartz F., Scherer G. F. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. PubMed DOI

Wolfender J. L., Rudaz S., Hae Choi Y., Kyong Kim H. (2013). Plant metabolomics: from holistic data to relevant biomarkers. PubMed DOI

Wu D., Shen Q., Cai S., Chen Z. H., Dai F., Zhang G. (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. PubMed DOI

Xie Y., Ling T., Han Y., Liu K., Zheng Q., Huang L., et al. (2008). Carbon monoxide enhances salt tolerance by nitric oxide−mediated maintenance of ion homeostasis and up−regulation of antioxidant defence in wheat seedling roots. PubMed DOI

Xing Y., Jia W., Zhang J. (2008). AtMKK1 mediates ABA−induced CAT1 expression and H2O2 production via AtMPK6−coupled signaling in Arabidopsis. PubMed DOI

Xiong L., Zhu J. K. (2003). Regulation of abscisic acid biosynthesis. PubMed DOI PMC

Xu C., Jiang Z., Huang B. (2011). Nitrogen deficiency-induced protein changes in immature and mature leaves of creeping bentgrass. DOI

Xu E., Chen M., He H., Zhan C., Cheng Y., Zhang H., et al. (2017). Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. PubMed PMC

Xu J., Wang W., Sun J., Zhang Y., Ge Q., Du L., et al. (2011). Involvement of auxin and nitric oxide in plant Cd-stress responses. DOI

Xu P., Liu Z., Fan X., Gao J., Zhang X., Zhang X., et al. (2013). De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. PubMed DOI

Xu Q., Xu X., Zhao Y., Jiao K., Herbert S. J., Hao L. (2008). Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. DOI

Xu Y., Gao S., Yang Y., Huang M., Cheng L., Wei Q., et al. (2013). Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. PubMed DOI PMC

Xuan L., Li J., Wang X., Wang C. (2020). Crosstalk between hydrogen sulfide and other signal molecules regulates plant growth and development. PubMed DOI PMC

Yadu S., Dewangan T. L., Chandrakar V., Keshavkant S. (2017). Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. PubMed DOI PMC

Yan K., Shao H. B., Shao C. H., Chen P., Zhao S., Brestic M., et al. (2013). Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. DOI

Yang T., Lv R., Li J., Lin H., Xi D. (2018). Phytochrome A and B negatively regulate salt stress tolerance of Nicotiana tobacum via ABA–jasmonic acid synergistic cross-talk. PubMed DOI

Yang Y., Guo Y. (2018). Elucidating the molecular mechanisms mediating plant salt−stress responses. PubMed DOI

Zeng L., Shannon M. C., Lesch S. M. (2001). Timing of salinity stress affects rice growth and yield components. DOI

Zhang J., Zhang Y., Du Y., Chen S., Tang H. (2011). Dynamic metabolomic responses of tobacco (Nicotiana tabacum) plants to salt stress. PubMed DOI

Zhang L., Pei Y., Wang H., Jin Z., Liu Z., Qiao Z., et al. (2015). Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. PubMed DOI PMC

Zhang L., Yu Z., Jiang L., Jiang J., Luo H., Fu L. (2011). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. PubMed DOI

Zhang P., Luo Q., Wang R., Xu J. (2017). Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. PubMed DOI PMC

Zhang Y., Tan J., Guo Z., Lu S., He S., Shu W., et al. (2009). Increased abscisic acid levels in transgenic tobacco over−expressing 9 cis−epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. PubMed DOI

Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., Zhang W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. PubMed DOI

Zhao F., Song C. P., He J., Zhu H. (2007). Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. PubMed DOI PMC

Zhao G., Zhao Y., Yu X., Kiprotich F., Han H., Guan R., et al. (2018). Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. PubMed DOI PMC

Zhao M. G., Tian Q. Y., Zhang W. H. (2007). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. PubMed DOI PMC

Zhao Y., Hu F., Zhang X., Wei Q., Dong J., Bo C., et al. (2019). Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An’nong 591 under heat stress. PubMed DOI PMC

Zhao Z., Zhang W., Stanley B. A., Assmann S. M. (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. PubMed DOI PMC

Zheng C., Jiang D., Liu F., Dai T., Liu W., Jing Q., et al. (2009). Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. DOI

Zhu J. K., Liu J., Xiong L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. PubMed DOI PMC

Zhu T., Deng X., Zhou X., Zhu L., Zou L., Li P., et al. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. PubMed DOI PMC

Zi J., Zhang J., Wang Q., Lin L., Tong W., Bai X., et al. (2012). Proteomics study of rice embryogenesis: discovery of the embryogenesis-dependent globulins. PubMed DOI

Zörb C., Geilfus C. M., Mühling K. H., Ludwig-Müller J. (2013). The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. PubMed DOI

Zörb C., Schmitt S., Mühling K. H. (2010). Proteomic changes in maize roots after short−term adjustment to saline growth conditions. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...