Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat

. 2022 ; 13 () : 987641. [epub] 20221017

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36325561

Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.

Zobrazit více v PubMed

Abd El-Hameid A. R., Sadak M. S. (2020). Impact of glutathione on enhancing sunflower growth and biochemical aspects and yield to alleviate salinity stress. Biocatalysis Agric. Biotechnol. 29, 101744. doi: 10.1016/j.bcab.2020.101744 DOI

Abdelhamid M., Horiuchi T., Oba S. (2003). Evaluation of the SPAD value in faba bean (Vicia faba l.) leaves in relation to different fertilizer applications. Plant Production Sci. 6, 185–189. doi: 10.1626/pps.6.185 DOI

Abd Elhamid E. M., Sadak M. S., Tawfik M. (2016). Physiological response of fenugreek plant to the application of proline under different water regimes. Res. J. Pharm. Biol. Chem. Sci. 7, 580–594.

Abdelhamid M. T., Selim E., El-Ghamry A. (2011). Integrated effects of bio and mineral fertilizers and humic substances on growth, yield and nutrient contents of fertigated cowpea (Vigna unguiculata l.) grown on sandy soils. J. Agron. 10, 34–39. doi: 10.3923/ja.2011.34.39 DOI

Abd El-Rheem K. M., Zaghloul S. M., Essa E. M. (2015). The stimulant effect of the spirulina algae under low levels of nitrogen fertilization on wheat plants grown in sandy soils. Int. J. ChemTech Res. 8, 87–91. Available at: https://sphinxsai.com/2015/ch_vol8_no12/1/(87-92)V8N12CT.pdf.

Ahmed H. G. M. D., Zeng Y., Raza H., Muhammad D., Iqbal M., Uzair M., et al. . (2022). Characterization of wheat (Triticum aestivum l.) accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage. Front. Plant Sci. 13, 953670. doi: 10.3389/fpls.2022.953670 PubMed DOI PMC

Akladious S. A., Abbas S. M. (2013). Alleviation of sea water stress on tomato plants by foliar application of aspartic acid and glutathione. Bangladesh J. Bot. 42, 31–44. doi: 10.3329/bjb.v42i1.15822 DOI

Alfosea-Simón M., Simón-Grao S., Zavala-Gonzalez E. A., Cámara-Zapata J. M., Simón I., Martínez-Nicolás J. J., et al. . (2021). Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front. Plant Sci. 11, 581234. doi: 10.3389/fpls.2020.581234 PubMed DOI PMC

Alharbi B. M., Elhakem A. H., Alnusairi G. S., Soliman M. H., Hakeem K. R., Hasan M. M., et al. . (2021). Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ. 67, 208–220. doi: 10.17221/659/2020-PSE DOI

Ali H. E. M., Ismail G. S. M. (2014). Tomato fruit quality as influenced by salinity and nitric oxide. Turkish J. Bot. 38, 122–129. doi: 10.3906/bot-1210-44 DOI

Alscher R. G., Erturk N., Heath L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341. doi: 10.1093/jexbot/53.372.1331 PubMed DOI

Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMed DOI

Ardebili Z. O., Moghadam A. R. L., Ardebili N. O., Pashaie A. R. (2012). The induced physiological changes by foliar application of amino acids in Aloe vera l. plants. Plant Omics 5, 279. Available at: https://www.pomics.com/ardebili_5_3_2012_279_284.pdf.

Asao S., Ryan M. G. (2015). Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees. Tree Physiol. 35, 608–620. doi: 10.1093/treephys/tpv025 PubMed DOI

Ashraf M. (2003). Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale retz.) under salinity or waterlogging. Plant Sci. 165, 69–75. doi: 10.1016/S0168-9452(03)00128-6 DOI

Astorg P., Gradelet S., Bergès R., Suschetet M. (1997). Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutrition and Cancer 29, 1, 60–68. doi: 10.1080/01635589709514603 PubMed DOI

Awad N., Turky A., Abdelhamid M., Attia M. (2012). Ameliorate of environmental salt stress on the growth of Zea mays l. plants by exopolysaccharides producing bacteria. J. Appl. Sci. Res. 2033–2044.

Babu M. A., Singh D., Gothandam K. M. (2011). Effect of salt stress on expression of carotenoid pathway genes in tomato. J. Stress Physiol. Biochem. 7 (3), 87–94.

Bakhoum G. S., Badr E.a.E., Sadak M.S., Kabesh M.O., and Amin G.A. (2019). Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43. doi: 10.1007/s41742-018-0148-1 DOI

Bano A., Yasmeen S. (2010). Role of phytohormones under induced drought stress in wheat. Pak J. Bot. 42, 2579–2587.

Bates L. S., Waldren R. P., Teare I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060 DOI

Bekheta M., Abdelhamid M., El-Morsi A. (2009). Physiological response of Vicia faba to prohexadione-calcium under saline conditions. Planta Daninha 27, 769–779. doi: 10.1590/S0100-83582009000400015 DOI

Bergmeyer H. U. (1974). “Methods of enzymatic analysis” (New York: Academic Press, Inc.).

Britton G. (1996). Carotenoids In: Natural Food Colorants, Hendry G. A. F.. (eds.), 197–243. doi: 10.1002/chin.199532313 DOI

Buchanan B. B. (1980). Role of light in the regulation of chloroplast enzymes. Annual Review of Plant Physiology 31, 341–374. doi: 10.1146/annurev.pp.31.060180.002013 DOI

Burguieres E., Mccue P., Kwon Y.-I., Shetty K. (2007). Effect of vitamin c and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresource Technol. 98, 1393–1404. doi: 10.1016/j.biortech.2006.05.046 PubMed DOI

Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10 (3), 3. doi: 10.38212/2224-6614.2748 DOI

Chartzoulakis K., Klapaki G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Hortic. 86, 247–260. doi: 10.1016/S0304-4238(00)00151-5 DOI

Chen J., Wang X. (2006). Plant physiology experimental guide (Beijing: Higher Education Press; ).

Chinnusamy V., Zhu J., Zhu J.-K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. 27, 141–177. doi: 10.1007/0-387-25856-6_9 PubMed DOI

Davies D. (1982). “Physiological aspects of protein turnover”. Nucleic Acids proteins: structure Biochem. Physiol. proteins. Springer Verlag), 190–228. doi: 10.1007/978-3-642-68237-7_7 DOI

Dawood M. G., Abdelhamid M. T., Schmidhalter U. (2014). Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris l.). J. Hortic. Sci. Biotechnol. 89, 185–192. doi: 10.1080/14620316.2014.11513067 DOI

Diaz D. H., Martin G. C. (1972). Peach seed dormancy in relation to endogenous inhibitors and applied growth substances. Amer Soc. Hort Sci. J. 97 (5), 651–654. doi: 10.21273/JASHS.97.5.651 DOI

Di Mascio P., Kaiser S., Sies H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. biophysics 274, 532–538. doi: 10.1016/0003-9861(89)90467-0 PubMed DOI

Dorais M., Papadopoulos A. P., Turcotte G., Hao X., Ehret D. L., Gosselin A. (2000). Control of tomato fruit quality and flavour by EC and water management, Greenhouse and Processing Crops Research Centre Annual Report, Harrow, ON, Canada, pp. 18–21.

Dubois M., Gilles K. A., Hamilton J. K., Rebers P. T., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chem. 28, 350–356. doi: 10.1021/ac60111a017 DOI

Dumas Y., Dadomo M., Di Lucca G., Grolier P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 83, 369–382. doi: 10.1002/jsfa.1370 DOI

El-Awadi M., Sadak M., Dawood M., Khater M., Elashtokhy M. (2017). Amelioration the adverse effects of salinity stress by using γ-radiation in faba bean plants. Bull. NRC 41, 293–310.

El-Awadi M. E., Sadak M. S., El-Rorkiek K. G. A., Dawood M. G. (2019). Physiological response of two wheat cultivars grown under sandy soil conditions to aspartic acid application. J. Appl. Sci. 19, 811–817. doi: 10.3923/jas.2019.811.817 DOI

El-Bassiouny H., Sadak M. S. (2015). Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biológica Colombiana 20, 209–222. doi: 10.15446/abc.v20n2.43868 DOI

Elewa T. A., Sadak M. S., Saad A. M. (2017). Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Res. 14, 21–33.

El-Lethy S. R., Abdelhamid M. T., Reda F. (2013). Effect of potassium application on wheat (Triticum aestivum l.) cultivars grown under salinity stress. World Appl. Sci. J. 26, 840–850. doi: 10.5829/idosi.wasj.2013.26.07.13527 DOI

El Sabagh A., Islam M. S., Skalicky M., Raza M. A., Singh K., Hossain M. A., et al. . (2021). Salinity stress in wheat (Triticum aestivum l.) in the changing climate: adaptation and management strategies. Front. Agron. 3. doi: 10.3389/fagro.2021.661932 DOI

El-Sherbeny M. R., Da Silva J. A. T. (2013). Foliar treatment with proline and tyrosine affect the growth and yield of beetroot and some pigments in beetroot leaves. J. Hortic. Res. 21, 95–99. doi: 10.2478/johr-2013-0027 DOI

Farhangi-Abriz S., Ghassemi-Golezani K. (2016). Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J. Appl. Bot. Food Qual. 89, 243–248. doi: 10.5073/JABFQ.2016.089.031 DOI

Geetha S., Ram M. S., Mongia S., Singh V., Ilavazhagan G., Sawhney R. (2003). Evaluation of antioxidant activity of leaf extract of seabuckthorn (Hippophae rhamnoides l.) on chromium (VI) induced oxidative stress in albino rats. J. Ethnopharmacol 87, 247–251. doi: 10.1016/S0378-8741(03)00154-5 PubMed DOI

Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMed DOI

Gomez K. A., Gomez A. A. (1984). Statistical procedures for agricultural research (New York: John Wiley & Sons; ).

Griffith O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochem. 106, 207–212. doi: 10.1016/0003-2697(80)90139-6 PubMed DOI

Gyamfi M. A., Yonamine M., Aniya Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol: Vasc. System 32, 661–667. doi: 10.1016/S0306-3623(98)00238-9 PubMed DOI

Hammer Ø., Harper D. A., Ryan P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol electronica 4, 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Han M., Zhang C., Suglo P., Sun S., Wang M., Su T. (2021). L-aspartate: An essential metabolite for plant growth and stress acclimation. Molecules 26, 1887. doi: 10.3390/molecules26071887 PubMed DOI PMC

Hasanuzzaman M., Fujita M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions. Int. J. Mol. Sci. 23, 4810. doi: 10.3390/ijms23094810 PubMed DOI PMC

Hayat S., Hayat Q., Alyemeni M. N., Wani A. S., Pichtel J., Ahmad A. (2012). Role of proline under changing environments: a review. Plant Signaling Behav. 7, 1456–1466. doi: 10.4161/psb.21949 PubMed DOI PMC

Heldt H.-W., Piechulla B. (2010). Plant biochemistry (London, UK: Academic Press; ).

Helrich K. (1990). “Official methods of analysis. vitamin c (Ascorbic acid),” in Association of official analytical chemists (Washington, DC, USA: Benjamin Franklin Station; ).

Herbert D., Phipps P., Strange R. (1971). “Chapter III chemical analysis of microbial cells,” in Methods in microbiology (London, UK: Academic Press; ) 5, 209–344.

Hodges D. M., Delong J. M., Forney C. F., Prange R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. doi: 10.1007/s004250050524 PubMed DOI

Hussein M., Sabbour M., El-Faham S. Y. (2015). Adenine and guanine application and its effect on salinity tolerant of wheat plants and pest infestations. Int. J. PharmTech Res. 8, 121–129.

Jander G., Joshi V. (2010). Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol. Plant 3, 54–65. doi: 10.1093/mp/ssp104 PubMed DOI

Jaworski E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 43, 1274–1279. doi: 10.1016/S0006-291X(71)80010-4 PubMed DOI

Kose C., Erdal S., Kaya O., Atici O. (2011). Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks. J. Sci. Food Agric. 91, 738–741. doi: 10.1002/jsfa.4244 PubMed DOI

Larsen P., Harbo A., Klungsöyr S., Aasheim T. (1962). On the biogenesis of some indole compounds in acetobacter xylinum. Physiol plantarum 15, 552–565. doi: 10.1111/j.1399-3054.1962.tb08058.x DOI

Lei S., Rossi S., Huang B. (2022). Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 11, 199. doi: 10.3390/plants11020199 PubMed DOI PMC

Levene H. (1960). Robust tests for equality of variances. Contrib to probability statistics Palo Alto, Calif.: Stanford University Press, 279–292.

Lichtenthaler H. K., Buschmann C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food analytical Chem. 1, F4. doi: 10.1002/0471142913.faf0403s01 DOI

Li Q., Liu J., Wu J., Li L., Zhang L. (2009). Effect of salt stress on membrane permeability and na+, k+ absorption of oat. Acta Agric. Boreali-Sin 24, 88–92.

Maas E. V., Hoffman G. J. (1977). Crop salt tolerance–current assessment. J. irrigation drainage division 103, 115–134. doi: 10.1061/JRCEA4.0001137 DOI

Maeda H., Dudareva N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105. doi: 10.1146/annurev-arplant-042811-105439 PubMed DOI

Marschner H. (1995). Mineral nutrition of higher plants (London: Academic Press; ).

Meijer A. J. (2003). Amino acids as regulators and components of nonproteinogenic pathways. J. Nutr. 133, 2057S–2062S. doi: 10.1093/jn/133.6.2057S PubMed DOI

Mittova V., Tal M., Volokita M., Guy M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species lycopersicon pennellii but not in the cultivated species. Physiol Plantarum 115, 393–400. doi: 10.1034/j.1399-3054.2002.1150309.x PubMed DOI

Mohamed H. I., El-Sayed A. A., Rady M. M., Caruso G., Sekara A., Abdelhamid M. T. (2021). Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ 9, e11463. doi: 10.7717/peerj.11463 PubMed DOI PMC

Mujeeb-Kazi A., Munns R., Rasheed A., Ogbonnaya F. C., Ali N., Hollington P., et al. . (2019). Breeding strategies for structuring salinity tolerance in wheat. Adv. Agron. 155, 121–187. doi: 10.1016/bs.agron.2019.01.005 DOI

Nagata M., Yamashita I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39, 925–928. doi: 10.3136/nskkk1962.39.925 DOI

Naidu B., Paleg L., Aspinall D., Jennings A., Jones G. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30, 407–409. doi: 10.1016/0031-9422(91)83693-F DOI

Nazarbeygi E., Yazdi H. L., Naseri R., Soleimani R. (2011). The effects of different levels of salinity on proline and a-, b-chlorophylls in canola. American-Eurasian J. Agric. Environ. Sci. 10, 70–74.

Nenadis N., Wang L.-F., Tsimidou M., Zhang H.-Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J. Agric. Food Chem. 52, 4669–4674. doi: 10.1021/jf0400056 PubMed DOI

Orabi S. A., Sadak M. S. (2015). Improvement of productivity and quality of two wheat cultivars by foliar application of spermine and paclobutrazol. Middle East J. Agric. Res. 4, 195–203.

Oraki H., Aghaalikhana M. (2012). Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower (Helianthus annuus l.) hybrids. Afr. J. Biotechnol. 11, 164–168. doi: 10.5897/AJB11.619 DOI

Pervaiz A., Iqbal A., Khalid A., Manzoor A., Noreen S., Ayaz A., et al. . (2019). Proline induced modulation in physiological responses in wheat plants. J. Agric. Environ. Sci. 8, 112–119. doi: 10.15640/jaes.v8n1a11 DOI

Rady M. M., Mounzer O., Alarcón J., Abdelhamid M., Howladar S. (2016). Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum l.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. J. Appl. Bot. Food Qual. 89, 21–28. doi: 10.1080/14620316.2019.1626773 DOI

Rady M. M., Sadak M. S., El-Lethy S. R., Abd Elhamid E. M., Abdelhamid M. T. (2015). Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J. Hortic. Sci. Biotechnol. 90, 195–202. doi: 10.1080/14620316.2015.11513172 DOI

Rady M. M., Talaat N. B., Abdelhamid M. T., Shawky B. T., Desoky E.-S. M. (2019). Maize (Zea mays l.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris l.) growth and physiology. J. Hortic. Sci. Biotechnol. 94, 777–789. doi: 10.1080/14620316.2019.1626773 DOI

Rasul G., Ahmed S., Ahmed M. Q. (2015). Influence of different organic fertilizers on growth and yield of wheat. American-Eurasian J. Agric. Environ. Sci. 15, 1123–1126. doi: 10.5829/idosi.aejaes.2015.15.6.12680 DOI

Rehman H. U., Alharby H. F., Bamagoos A. A., Abdelhamid M. T., Rady M. M. (2021). Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol. Biochem. 158, 43–52. doi: 10.1016/j.plaphy.2020.11.041 PubMed DOI

Rizwan M., Ali S., Adrees M., Rizvi H., Zia-Ur-Rehman M., Hannan F., et al. . (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. pollut. Res. 23, 17859–17879. doi: 10.1007/s11356-016-6436-4 PubMed DOI

Rizwan M., Ali S., Akbar M. Z., Shakoor M. B., Mahmood A., Ishaque W., et al. . (2017. a). Foliar application of aspartic acid lowers cadmium uptake and cd-induced oxidative stress in rice under cd stress. Environ. Sci. pollut. Res. 24, 21938–21947. doi: 10.1007/s11356-017-9860-1 PubMed DOI

Rizwan M., Ali S., Zaheer Akbar M., Shakoor M. B., Mahmood A., Ishaque W., et al. . (2017. b). Foliar application of aspartic acid lowers cadmium uptake and cd-induced oxidative stress in rice under cd stress. Environ. Sci. pollut. Res. 24, 21938–21947. doi: 10.1007/s11356-017-9860-1 PubMed DOI

Sabaghnia N., Janmohammadi M. (2014). Interrelationships among some morphological traits of wheat (Triticum aestivum l.) cultivars using biplot. Botanica Lithuanica (1392-1665) 20 (1), 19–26. doi: 10.2478/botlit-2014-0003 DOI

Sadak M. S., Abd El-Hameid A. R., Zaki F. S., Dawood M. G., El-Awadi M. E. (2020). Physiological and biochemical responses of soybean (Glycine max l.) to cysteine application under sea salt stress. Bull. Natl. Res. Centre 44, 1–10. doi: 10.1186/s42269-019-0259-7 DOI

Sadak M. S., Abdelhamid M. T. (2015). Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen 67, 119–129. doi: 10.1007/s10343-015-0344-2 DOI

Saddiq M. S., Afzal I., Basra S., Iqbal S., Ashraf M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. J. Soil Sci. Plant Nutr. 20, 1442–1456. doi: 10.1007/s42729-020-00224-y DOI

Saddiq M. S., Iqbal S., Afzal I., Ibrahim A. M., Bakhtavar M. A., Hafeez M. B. (2019). Mitigation of salinity stress in wheat (Triticum aestivum l.) seedlings through physiological seed enhancements. J. Plant Nutr. 42, 1192–1204. doi: 10.1080/01904167.2019.1609509 DOI

Saddiq M. S., Iqbal S., Hafeez M. B., Ibrahim A. M., Raza A., Fatima E. M., et al. . (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11, 1193. doi: 10.3390/agronomy11061193 DOI

Sandmann G. (1994). Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223, 7–24. doi: 10.1111/j.1432-1033.1994.tb18961.x PubMed DOI

Schutzendubel A., Polle A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365. doi: 10.1093/jexbot/53.372.1351 PubMed DOI

Shapiro S. S., Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. doi: 10.1093/biomet/52.3-4.591 DOI

Sharma P., Dubey R. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26, 2027–2038. doi: 10.1007/s00299-007-0416-6 PubMed DOI

Shekari G., Javanmardi J. (2017). Application of cysteine, methionine and amino acid containing fertilizers to replace urea: The effects on yield and quality of broccoli. Adv. Crop Sci. Tech 5, 283. doi: 10.4172/2329-8863.1000283 DOI

Simon-Sarkadi L., Galiba G. (1996). Reflection of environmental stresses on the amino acid composition of wheat. Periodica Polytechnica Chem. Eng. 40, 79–86.

Singhal R. K., Saha D., Skalicky M., Mishra U. N., Chauhan J., Behera L. P., et al. . (2021). Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.670369 PubMed DOI PMC

Taiz L., Zeiger E. (2010). Plant physiology. 5th edn (Sunderland: MA: Sinauer Associates; ).

Tegeder M., Masclaux-Daubresse C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53. doi: 10.1111/nph.14876 PubMed DOI

Teixeira W. F., Fagan E. B., Soares L. H., Umburanas R. C., Reichardt K., Neto D. D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 327. doi: 10.3389/fpls.2017.00327 PubMed DOI PMC

Tian X. L., Wu X. L., Li Y., Zhang S. Q. (2005). The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling. Shi yan Sheng wu xue bao 38, 75–79. PubMed

Vartanian N., Hervochon P., Marcotte L., Larher F. (1992). Proline accumulation during drought rhizogenesis in Brassica napus var. oleifera. J. Plant Physiol. 140, 623–628. doi: 10.1016/S0176-1617(11)80799-6 DOI

Velikova V., Yordanov I., Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66. doi: 10.1016/S0168-9452(99)00197-1 DOI

Wang Y., Chen J., Di X. (2011). A comparative study on POD, MDA and dissoluble protein of six provenances of Chinese pine (Pinus tabulaeformis carr.) under water stress. ecol. Environ. Sci. 20, 1449–1453. doi: 10.1016/J.IJHEATMASSTRANSFER.2012.04.053 DOI

Xu M., Yuan L., Li W., Li Y., Li J., Zhao B. (2018). Effects of a fertilizer synergist containing compound amino acids on seed germination and seedling growth of pakchoi under NaCl stress. J. Plant Nutr. Fertil 24, 992–1000.

Yan W., Hunt L. A., Sheng Q., Szlavnics Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40, 597–605. doi: 10.2135/cropsci2000.403597x DOI

Yan W., Kang M. S. (2002). “GGE biplot analysis,” in A graphical tool for breeders, geneticists, and agronomists (Boca Raton: CRC press; ). doi: 10.1201/9781420040371 DOI

Yemm E., Cocking E., Ricketts R. (1955). The determination of amino-acids with ninhydrin. Analyst 80, 209–214. doi: 10.1039/an9558000209 DOI

Yemm E. W., Willis A. J. (1956). The respiration of barley plants: IX. the metabolism of roots during the assimilation of nitrogen. New Phytol. 55, 229–252. doi: 10.1111/j.1469-8137.1956.tb05283.x DOI

Yu L., Haley S., Perret J., Harris M. (2002). Antioxidant properties of hard winter wheat extracts. Food Chem. 78, 457–461. doi: 10.1016/S0308-8146(02)00156-5 DOI

Zhang L.-X., Cooney R. V., Bertram J. S. (1991). Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12, 2109–2114. doi: 10.1093/carcin/12.11.2109 PubMed DOI

Zhang J.-S., Wang Y.-Q., Song J.-N., Xu J.-P., Yang H.-B. (2020). Effect of aspartic acid on physiological characteristics and gene expression of salt exclusion in tartary buckwheat under salt stress. J. Plant Biochem. Biotechnol. 29, 94–101. doi: 10.1007/s13562-019-00518-y DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace