Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36325561
PubMed Central
PMC9619216
DOI
10.3389/fpls.2022.987641
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant enzymes, Triticum aestivum, aspartic acid, hydrogen peroxide, lipid peroxidation, osmoprotectants, salinity stress,
- Publikační typ
- časopisecké články MeSH
Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.
Botany Department National Research Centre Cairo Egypt
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafrelsheikh Egypt
Department of Horticulture The University of Agriculture in Krakow Kraków Poland
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Institute of Crop Science and Resource Conservation University of Bonn Crop Science Bonn Germany
Zobrazit více v PubMed
Abd El-Hameid A. R., Sadak M. S. (2020). Impact of glutathione on enhancing sunflower growth and biochemical aspects and yield to alleviate salinity stress. Biocatalysis Agric. Biotechnol. 29, 101744. doi: 10.1016/j.bcab.2020.101744 DOI
Abdelhamid M., Horiuchi T., Oba S. (2003). Evaluation of the SPAD value in faba bean (Vicia faba l.) leaves in relation to different fertilizer applications. Plant Production Sci. 6, 185–189. doi: 10.1626/pps.6.185 DOI
Abd Elhamid E. M., Sadak M. S., Tawfik M. (2016). Physiological response of fenugreek plant to the application of proline under different water regimes. Res. J. Pharm. Biol. Chem. Sci. 7, 580–594.
Abdelhamid M. T., Selim E., El-Ghamry A. (2011). Integrated effects of bio and mineral fertilizers and humic substances on growth, yield and nutrient contents of fertigated cowpea (Vigna unguiculata l.) grown on sandy soils. J. Agron. 10, 34–39. doi: 10.3923/ja.2011.34.39 DOI
Abd El-Rheem K. M., Zaghloul S. M., Essa E. M. (2015). The stimulant effect of the spirulina algae under low levels of nitrogen fertilization on wheat plants grown in sandy soils. Int. J. ChemTech Res. 8, 87–91. Available at: https://sphinxsai.com/2015/ch_vol8_no12/1/(87-92)V8N12CT.pdf.
Ahmed H. G. M. D., Zeng Y., Raza H., Muhammad D., Iqbal M., Uzair M., et al. . (2022). Characterization of wheat (Triticum aestivum l.) accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage. Front. Plant Sci. 13, 953670. doi: 10.3389/fpls.2022.953670 PubMed DOI PMC
Akladious S. A., Abbas S. M. (2013). Alleviation of sea water stress on tomato plants by foliar application of aspartic acid and glutathione. Bangladesh J. Bot. 42, 31–44. doi: 10.3329/bjb.v42i1.15822 DOI
Alfosea-Simón M., Simón-Grao S., Zavala-Gonzalez E. A., Cámara-Zapata J. M., Simón I., Martínez-Nicolás J. J., et al. . (2021). Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front. Plant Sci. 11, 581234. doi: 10.3389/fpls.2020.581234 PubMed DOI PMC
Alharbi B. M., Elhakem A. H., Alnusairi G. S., Soliman M. H., Hakeem K. R., Hasan M. M., et al. . (2021). Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ. 67, 208–220. doi: 10.17221/659/2020-PSE DOI
Ali H. E. M., Ismail G. S. M. (2014). Tomato fruit quality as influenced by salinity and nitric oxide. Turkish J. Bot. 38, 122–129. doi: 10.3906/bot-1210-44 DOI
Alscher R. G., Erturk N., Heath L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341. doi: 10.1093/jexbot/53.372.1331 PubMed DOI
Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Ardebili Z. O., Moghadam A. R. L., Ardebili N. O., Pashaie A. R. (2012). The induced physiological changes by foliar application of amino acids in Aloe vera l. plants. Plant Omics 5, 279. Available at: https://www.pomics.com/ardebili_5_3_2012_279_284.pdf.
Asao S., Ryan M. G. (2015). Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees. Tree Physiol. 35, 608–620. doi: 10.1093/treephys/tpv025 PubMed DOI
Ashraf M. (2003). Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale retz.) under salinity or waterlogging. Plant Sci. 165, 69–75. doi: 10.1016/S0168-9452(03)00128-6 DOI
Astorg P., Gradelet S., Bergès R., Suschetet M. (1997). Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutrition and Cancer 29, 1, 60–68. doi: 10.1080/01635589709514603 PubMed DOI
Awad N., Turky A., Abdelhamid M., Attia M. (2012). Ameliorate of environmental salt stress on the growth of Zea mays l. plants by exopolysaccharides producing bacteria. J. Appl. Sci. Res. 2033–2044.
Babu M. A., Singh D., Gothandam K. M. (2011). Effect of salt stress on expression of carotenoid pathway genes in tomato. J. Stress Physiol. Biochem. 7 (3), 87–94.
Bakhoum G. S., Badr E.a.E., Sadak M.S., Kabesh M.O., and Amin G.A. (2019). Improving growth, some biochemical aspects and yield of three cultivars of soybean plant by methionine treatment under sandy soil condition. Int. J. Environ. Res. 13, 35–43. doi: 10.1007/s41742-018-0148-1 DOI
Bano A., Yasmeen S. (2010). Role of phytohormones under induced drought stress in wheat. Pak J. Bot. 42, 2579–2587.
Bates L. S., Waldren R. P., Teare I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060 DOI
Bekheta M., Abdelhamid M., El-Morsi A. (2009). Physiological response of Vicia faba to prohexadione-calcium under saline conditions. Planta Daninha 27, 769–779. doi: 10.1590/S0100-83582009000400015 DOI
Bergmeyer H. U. (1974). “Methods of enzymatic analysis” (New York: Academic Press, Inc.).
Britton G. (1996). Carotenoids In: Natural Food Colorants, Hendry G. A. F.. (eds.), 197–243. doi: 10.1002/chin.199532313 DOI
Buchanan B. B. (1980). Role of light in the regulation of chloroplast enzymes. Annual Review of Plant Physiology 31, 341–374. doi: 10.1146/annurev.pp.31.060180.002013 DOI
Burguieres E., Mccue P., Kwon Y.-I., Shetty K. (2007). Effect of vitamin c and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresource Technol. 98, 1393–1404. doi: 10.1016/j.biortech.2006.05.046 PubMed DOI
Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10 (3), 3. doi: 10.38212/2224-6614.2748 DOI
Chartzoulakis K., Klapaki G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Hortic. 86, 247–260. doi: 10.1016/S0304-4238(00)00151-5 DOI
Chen J., Wang X. (2006). Plant physiology experimental guide (Beijing: Higher Education Press; ).
Chinnusamy V., Zhu J., Zhu J.-K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. 27, 141–177. doi: 10.1007/0-387-25856-6_9 PubMed DOI
Davies D. (1982). “Physiological aspects of protein turnover”. Nucleic Acids proteins: structure Biochem. Physiol. proteins. Springer Verlag), 190–228. doi: 10.1007/978-3-642-68237-7_7 DOI
Dawood M. G., Abdelhamid M. T., Schmidhalter U. (2014). Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris l.). J. Hortic. Sci. Biotechnol. 89, 185–192. doi: 10.1080/14620316.2014.11513067 DOI
Diaz D. H., Martin G. C. (1972). Peach seed dormancy in relation to endogenous inhibitors and applied growth substances. Amer Soc. Hort Sci. J. 97 (5), 651–654. doi: 10.21273/JASHS.97.5.651 DOI
Di Mascio P., Kaiser S., Sies H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. biophysics 274, 532–538. doi: 10.1016/0003-9861(89)90467-0 PubMed DOI
Dorais M., Papadopoulos A. P., Turcotte G., Hao X., Ehret D. L., Gosselin A. (2000). Control of tomato fruit quality and flavour by EC and water management, Greenhouse and Processing Crops Research Centre Annual Report, Harrow, ON, Canada, pp. 18–21.
Dubois M., Gilles K. A., Hamilton J. K., Rebers P. T., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chem. 28, 350–356. doi: 10.1021/ac60111a017 DOI
Dumas Y., Dadomo M., Di Lucca G., Grolier P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 83, 369–382. doi: 10.1002/jsfa.1370 DOI
El-Awadi M., Sadak M., Dawood M., Khater M., Elashtokhy M. (2017). Amelioration the adverse effects of salinity stress by using γ-radiation in faba bean plants. Bull. NRC 41, 293–310.
El-Awadi M. E., Sadak M. S., El-Rorkiek K. G. A., Dawood M. G. (2019). Physiological response of two wheat cultivars grown under sandy soil conditions to aspartic acid application. J. Appl. Sci. 19, 811–817. doi: 10.3923/jas.2019.811.817 DOI
El-Bassiouny H., Sadak M. S. (2015). Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biológica Colombiana 20, 209–222. doi: 10.15446/abc.v20n2.43868 DOI
Elewa T. A., Sadak M. S., Saad A. M. (2017). Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Res. 14, 21–33.
El-Lethy S. R., Abdelhamid M. T., Reda F. (2013). Effect of potassium application on wheat (Triticum aestivum l.) cultivars grown under salinity stress. World Appl. Sci. J. 26, 840–850. doi: 10.5829/idosi.wasj.2013.26.07.13527 DOI
El Sabagh A., Islam M. S., Skalicky M., Raza M. A., Singh K., Hossain M. A., et al. . (2021). Salinity stress in wheat (Triticum aestivum l.) in the changing climate: adaptation and management strategies. Front. Agron. 3. doi: 10.3389/fagro.2021.661932 DOI
El-Sherbeny M. R., Da Silva J. A. T. (2013). Foliar treatment with proline and tyrosine affect the growth and yield of beetroot and some pigments in beetroot leaves. J. Hortic. Res. 21, 95–99. doi: 10.2478/johr-2013-0027 DOI
Farhangi-Abriz S., Ghassemi-Golezani K. (2016). Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J. Appl. Bot. Food Qual. 89, 243–248. doi: 10.5073/JABFQ.2016.089.031 DOI
Geetha S., Ram M. S., Mongia S., Singh V., Ilavazhagan G., Sawhney R. (2003). Evaluation of antioxidant activity of leaf extract of seabuckthorn (Hippophae rhamnoides l.) on chromium (VI) induced oxidative stress in albino rats. J. Ethnopharmacol 87, 247–251. doi: 10.1016/S0378-8741(03)00154-5 PubMed DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMed DOI
Gomez K. A., Gomez A. A. (1984). Statistical procedures for agricultural research (New York: John Wiley & Sons; ).
Griffith O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochem. 106, 207–212. doi: 10.1016/0003-2697(80)90139-6 PubMed DOI
Gyamfi M. A., Yonamine M., Aniya Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol: Vasc. System 32, 661–667. doi: 10.1016/S0306-3623(98)00238-9 PubMed DOI
Hammer Ø., Harper D. A., Ryan P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol electronica 4, 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Han M., Zhang C., Suglo P., Sun S., Wang M., Su T. (2021). L-aspartate: An essential metabolite for plant growth and stress acclimation. Molecules 26, 1887. doi: 10.3390/molecules26071887 PubMed DOI PMC
Hasanuzzaman M., Fujita M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions. Int. J. Mol. Sci. 23, 4810. doi: 10.3390/ijms23094810 PubMed DOI PMC
Hayat S., Hayat Q., Alyemeni M. N., Wani A. S., Pichtel J., Ahmad A. (2012). Role of proline under changing environments: a review. Plant Signaling Behav. 7, 1456–1466. doi: 10.4161/psb.21949 PubMed DOI PMC
Heldt H.-W., Piechulla B. (2010). Plant biochemistry (London, UK: Academic Press; ).
Helrich K. (1990). “Official methods of analysis. vitamin c (Ascorbic acid),” in Association of official analytical chemists (Washington, DC, USA: Benjamin Franklin Station; ).
Herbert D., Phipps P., Strange R. (1971). “Chapter III chemical analysis of microbial cells,” in Methods in microbiology (London, UK: Academic Press; ) 5, 209–344.
Hodges D. M., Delong J. M., Forney C. F., Prange R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. doi: 10.1007/s004250050524 PubMed DOI
Hussein M., Sabbour M., El-Faham S. Y. (2015). Adenine and guanine application and its effect on salinity tolerant of wheat plants and pest infestations. Int. J. PharmTech Res. 8, 121–129.
Jander G., Joshi V. (2010). Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol. Plant 3, 54–65. doi: 10.1093/mp/ssp104 PubMed DOI
Jaworski E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 43, 1274–1279. doi: 10.1016/S0006-291X(71)80010-4 PubMed DOI
Kose C., Erdal S., Kaya O., Atici O. (2011). Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks. J. Sci. Food Agric. 91, 738–741. doi: 10.1002/jsfa.4244 PubMed DOI
Larsen P., Harbo A., Klungsöyr S., Aasheim T. (1962). On the biogenesis of some indole compounds in acetobacter xylinum. Physiol plantarum 15, 552–565. doi: 10.1111/j.1399-3054.1962.tb08058.x DOI
Lei S., Rossi S., Huang B. (2022). Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 11, 199. doi: 10.3390/plants11020199 PubMed DOI PMC
Levene H. (1960). Robust tests for equality of variances. Contrib to probability statistics Palo Alto, Calif.: Stanford University Press, 279–292.
Lichtenthaler H. K., Buschmann C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food analytical Chem. 1, F4. doi: 10.1002/0471142913.faf0403s01 DOI
Li Q., Liu J., Wu J., Li L., Zhang L. (2009). Effect of salt stress on membrane permeability and na+, k+ absorption of oat. Acta Agric. Boreali-Sin 24, 88–92.
Maas E. V., Hoffman G. J. (1977). Crop salt tolerance–current assessment. J. irrigation drainage division 103, 115–134. doi: 10.1061/JRCEA4.0001137 DOI
Maeda H., Dudareva N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105. doi: 10.1146/annurev-arplant-042811-105439 PubMed DOI
Marschner H. (1995). Mineral nutrition of higher plants (London: Academic Press; ).
Meijer A. J. (2003). Amino acids as regulators and components of nonproteinogenic pathways. J. Nutr. 133, 2057S–2062S. doi: 10.1093/jn/133.6.2057S PubMed DOI
Mittova V., Tal M., Volokita M., Guy M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species lycopersicon pennellii but not in the cultivated species. Physiol Plantarum 115, 393–400. doi: 10.1034/j.1399-3054.2002.1150309.x PubMed DOI
Mohamed H. I., El-Sayed A. A., Rady M. M., Caruso G., Sekara A., Abdelhamid M. T. (2021). Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ 9, e11463. doi: 10.7717/peerj.11463 PubMed DOI PMC
Mujeeb-Kazi A., Munns R., Rasheed A., Ogbonnaya F. C., Ali N., Hollington P., et al. . (2019). Breeding strategies for structuring salinity tolerance in wheat. Adv. Agron. 155, 121–187. doi: 10.1016/bs.agron.2019.01.005 DOI
Nagata M., Yamashita I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39, 925–928. doi: 10.3136/nskkk1962.39.925 DOI
Naidu B., Paleg L., Aspinall D., Jennings A., Jones G. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30, 407–409. doi: 10.1016/0031-9422(91)83693-F DOI
Nazarbeygi E., Yazdi H. L., Naseri R., Soleimani R. (2011). The effects of different levels of salinity on proline and a-, b-chlorophylls in canola. American-Eurasian J. Agric. Environ. Sci. 10, 70–74.
Nenadis N., Wang L.-F., Tsimidou M., Zhang H.-Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J. Agric. Food Chem. 52, 4669–4674. doi: 10.1021/jf0400056 PubMed DOI
Orabi S. A., Sadak M. S. (2015). Improvement of productivity and quality of two wheat cultivars by foliar application of spermine and paclobutrazol. Middle East J. Agric. Res. 4, 195–203.
Oraki H., Aghaalikhana M. (2012). Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower (Helianthus annuus l.) hybrids. Afr. J. Biotechnol. 11, 164–168. doi: 10.5897/AJB11.619 DOI
Pervaiz A., Iqbal A., Khalid A., Manzoor A., Noreen S., Ayaz A., et al. . (2019). Proline induced modulation in physiological responses in wheat plants. J. Agric. Environ. Sci. 8, 112–119. doi: 10.15640/jaes.v8n1a11 DOI
Rady M. M., Mounzer O., Alarcón J., Abdelhamid M., Howladar S. (2016). Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum l.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. J. Appl. Bot. Food Qual. 89, 21–28. doi: 10.1080/14620316.2019.1626773 DOI
Rady M. M., Sadak M. S., El-Lethy S. R., Abd Elhamid E. M., Abdelhamid M. T. (2015). Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J. Hortic. Sci. Biotechnol. 90, 195–202. doi: 10.1080/14620316.2015.11513172 DOI
Rady M. M., Talaat N. B., Abdelhamid M. T., Shawky B. T., Desoky E.-S. M. (2019). Maize (Zea mays l.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris l.) growth and physiology. J. Hortic. Sci. Biotechnol. 94, 777–789. doi: 10.1080/14620316.2019.1626773 DOI
Rasul G., Ahmed S., Ahmed M. Q. (2015). Influence of different organic fertilizers on growth and yield of wheat. American-Eurasian J. Agric. Environ. Sci. 15, 1123–1126. doi: 10.5829/idosi.aejaes.2015.15.6.12680 DOI
Rehman H. U., Alharby H. F., Bamagoos A. A., Abdelhamid M. T., Rady M. M. (2021). Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol. Biochem. 158, 43–52. doi: 10.1016/j.plaphy.2020.11.041 PubMed DOI
Rizwan M., Ali S., Adrees M., Rizvi H., Zia-Ur-Rehman M., Hannan F., et al. . (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. pollut. Res. 23, 17859–17879. doi: 10.1007/s11356-016-6436-4 PubMed DOI
Rizwan M., Ali S., Akbar M. Z., Shakoor M. B., Mahmood A., Ishaque W., et al. . (2017. a). Foliar application of aspartic acid lowers cadmium uptake and cd-induced oxidative stress in rice under cd stress. Environ. Sci. pollut. Res. 24, 21938–21947. doi: 10.1007/s11356-017-9860-1 PubMed DOI
Rizwan M., Ali S., Zaheer Akbar M., Shakoor M. B., Mahmood A., Ishaque W., et al. . (2017. b). Foliar application of aspartic acid lowers cadmium uptake and cd-induced oxidative stress in rice under cd stress. Environ. Sci. pollut. Res. 24, 21938–21947. doi: 10.1007/s11356-017-9860-1 PubMed DOI
Sabaghnia N., Janmohammadi M. (2014). Interrelationships among some morphological traits of wheat (Triticum aestivum l.) cultivars using biplot. Botanica Lithuanica (1392-1665) 20 (1), 19–26. doi: 10.2478/botlit-2014-0003 DOI
Sadak M. S., Abd El-Hameid A. R., Zaki F. S., Dawood M. G., El-Awadi M. E. (2020). Physiological and biochemical responses of soybean (Glycine max l.) to cysteine application under sea salt stress. Bull. Natl. Res. Centre 44, 1–10. doi: 10.1186/s42269-019-0259-7 DOI
Sadak M. S., Abdelhamid M. T. (2015). Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen 67, 119–129. doi: 10.1007/s10343-015-0344-2 DOI
Saddiq M. S., Afzal I., Basra S., Iqbal S., Ashraf M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. J. Soil Sci. Plant Nutr. 20, 1442–1456. doi: 10.1007/s42729-020-00224-y DOI
Saddiq M. S., Iqbal S., Afzal I., Ibrahim A. M., Bakhtavar M. A., Hafeez M. B. (2019). Mitigation of salinity stress in wheat (Triticum aestivum l.) seedlings through physiological seed enhancements. J. Plant Nutr. 42, 1192–1204. doi: 10.1080/01904167.2019.1609509 DOI
Saddiq M. S., Iqbal S., Hafeez M. B., Ibrahim A. M., Raza A., Fatima E. M., et al. . (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11, 1193. doi: 10.3390/agronomy11061193 DOI
Sandmann G. (1994). Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223, 7–24. doi: 10.1111/j.1432-1033.1994.tb18961.x PubMed DOI
Schutzendubel A., Polle A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365. doi: 10.1093/jexbot/53.372.1351 PubMed DOI
Shapiro S. S., Wilk M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. doi: 10.1093/biomet/52.3-4.591 DOI
Sharma P., Dubey R. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26, 2027–2038. doi: 10.1007/s00299-007-0416-6 PubMed DOI
Shekari G., Javanmardi J. (2017). Application of cysteine, methionine and amino acid containing fertilizers to replace urea: The effects on yield and quality of broccoli. Adv. Crop Sci. Tech 5, 283. doi: 10.4172/2329-8863.1000283 DOI
Simon-Sarkadi L., Galiba G. (1996). Reflection of environmental stresses on the amino acid composition of wheat. Periodica Polytechnica Chem. Eng. 40, 79–86.
Singhal R. K., Saha D., Skalicky M., Mishra U. N., Chauhan J., Behera L. P., et al. . (2021). Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.670369 PubMed DOI PMC
Taiz L., Zeiger E. (2010). Plant physiology. 5th edn (Sunderland: MA: Sinauer Associates; ).
Tegeder M., Masclaux-Daubresse C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53. doi: 10.1111/nph.14876 PubMed DOI
Teixeira W. F., Fagan E. B., Soares L. H., Umburanas R. C., Reichardt K., Neto D. D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 327. doi: 10.3389/fpls.2017.00327 PubMed DOI PMC
Tian X. L., Wu X. L., Li Y., Zhang S. Q. (2005). The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling. Shi yan Sheng wu xue bao 38, 75–79. PubMed
Vartanian N., Hervochon P., Marcotte L., Larher F. (1992). Proline accumulation during drought rhizogenesis in Brassica napus var. oleifera. J. Plant Physiol. 140, 623–628. doi: 10.1016/S0176-1617(11)80799-6 DOI
Velikova V., Yordanov I., Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66. doi: 10.1016/S0168-9452(99)00197-1 DOI
Wang Y., Chen J., Di X. (2011). A comparative study on POD, MDA and dissoluble protein of six provenances of Chinese pine (Pinus tabulaeformis carr.) under water stress. ecol. Environ. Sci. 20, 1449–1453. doi: 10.1016/J.IJHEATMASSTRANSFER.2012.04.053 DOI
Xu M., Yuan L., Li W., Li Y., Li J., Zhao B. (2018). Effects of a fertilizer synergist containing compound amino acids on seed germination and seedling growth of pakchoi under NaCl stress. J. Plant Nutr. Fertil 24, 992–1000.
Yan W., Hunt L. A., Sheng Q., Szlavnics Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40, 597–605. doi: 10.2135/cropsci2000.403597x DOI
Yan W., Kang M. S. (2002). “GGE biplot analysis,” in A graphical tool for breeders, geneticists, and agronomists (Boca Raton: CRC press; ). doi: 10.1201/9781420040371 DOI
Yemm E., Cocking E., Ricketts R. (1955). The determination of amino-acids with ninhydrin. Analyst 80, 209–214. doi: 10.1039/an9558000209 DOI
Yemm E. W., Willis A. J. (1956). The respiration of barley plants: IX. the metabolism of roots during the assimilation of nitrogen. New Phytol. 55, 229–252. doi: 10.1111/j.1469-8137.1956.tb05283.x DOI
Yu L., Haley S., Perret J., Harris M. (2002). Antioxidant properties of hard winter wheat extracts. Food Chem. 78, 457–461. doi: 10.1016/S0308-8146(02)00156-5 DOI
Zhang L.-X., Cooney R. V., Bertram J. S. (1991). Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12, 2109–2114. doi: 10.1093/carcin/12.11.2109 PubMed DOI
Zhang J.-S., Wang Y.-Q., Song J.-N., Xu J.-P., Yang H.-B. (2020). Effect of aspartic acid on physiological characteristics and gene expression of salt exclusion in tartary buckwheat under salt stress. J. Plant Biochem. Biotechnol. 29, 94–101. doi: 10.1007/s13562-019-00518-y DOI