Mitigation of Salinity-Induced Oxidative Damage, Growth, and Yield Reduction in Fine Rice by Sugarcane Press Mud Application

. 2022 ; 13 () : 840900. [epub] 20220426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35645994

Salinity stress is one of the major global problems that negatively affect crop growth and productivity. Therefore, ecofriendly and sustainable strategies for mitigating salinity stress in agricultural production and global food security are highly demandable. Sugarcane press mud (PM) is an excellent source of the organic amendment, and the role of PM in mitigating salinity stress is not well understood. Therefore, this study was aimed to investigate how the PM mitigates salinity stress through the regulation of rice growth, yield, physiological properties, and antioxidant enzyme activities in fine rice grown under different salinity stress conditions. In this study, different levels of salinity (6 and 12 dS m-1) with or without different levels of 3, 6, and 9% of SPM, respectively were tested. Salinity stress significantly increased malondialdehyde (MDA, 38%), hydrogen peroxide (H2O2, 74.39%), Na+ (61.5%), electrolyte leakage (40.32%), decreased chlorophyll content (32.64%), leaf water content (107.77%), total soluble protein (TSP, 72.28%), and free amino acids (FAA, 75.27%). However, these negative effects of salinity stress were reversed mainly in rice plants after PM application. PM application (9%) remained the most effective and significantly increased growth, yield, TSP, FAA, accumulation of soluble sugars, proline, K+, and activity of antioxidant enzymes, namely, ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). Thus, these findings suggest a PM-mediated eco-friendly strategy for salinity alleviation in agricultural soil could be useful for plant growth and productivity in saline soils.

Zobrazit více v PubMed

Aebi H. (1984). Catalase in vitro. Methods Enzymol. 105 121–126. 10.1016/s0076-6879(84)05016-3 PubMed DOI

Aghighi S. M., Omidi H., Tabatabaei S. J. (2018). Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Ind. Crop. Prod. 125 408–415. 10.1016/j.indcrop.2018.09.029 DOI

Ahanger M. A., Tomar N. S., Tittal M., Argal S., Agarwal R. M. (2017). Plant growth under water/salt stress: ROS production, antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants. 23 731–744. 10.1007/s12298-017-0462-7 PubMed DOI PMC

Al-Ashkar I., Alderfasi A., El-Hendawy S., Al-Suhaibani N., El-Kafafi S., Seleiman M. F. (2019). Detecting salt tolerance in doubled haploid wheat lines. Agron 9:211. 10.3390/agronomy9040211 DOI

Alzahib R. H., Migdadi H. M., Al Ghamdi A. A., Alwahibi M. S., Ibrahim A. A., Al-Selwey W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants 10:696. 10.3390/plants10040696 PubMed DOI PMC

Bates L. S., Waldren R. P., Teare I. D. (1973). Rapid determination of free Proline for water-stress studies. Plant Soil. 39 205–207. 10.1007/bf00018060 DOI

Batool M., El-Badri A. M., Hassan M. U., Haiyun Y., Chunyun W., Zhenkun Y., et al. (2022). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J. Plant Growth Reg [preprint]. 10.1007/s00344-021-10542-9 DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 48–254. 10.1006/abio.1976.9999 PubMed DOI

Budiyanto G. (2021). The effect of combination of sugarcane pressmud compost and potassium fertilizer on vegetative growth of corn in coastal sandy soil. Food Res. 5 289–296. 10.26656/fr.2017.5(3).630 DOI

Chattha M. U., Hassan M. U., Barbanti L., Chattha M. B., Khan I., Usman M., et al. (2019). Composted sugarcane by-product press mud cake supports wheat growth and improves soil properties. Int. J. Plant Prod. 13 241–249. 10.1007/s42106-019-00051-x DOI

Dustgeer Z., Seleiman M. F., Imran K., Chattha M. U., Alhammad B. A., Jalal R. S., et al. (2021). Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Notulae Bot Hort. Agrobot. Cluj Napoca 49 12248–12248. 10.15835/nbha49112248 DOI

El Sabagh A., Islam M. S., Skalicky M., Ali R. M., Singh K., Anwar H. M., et al. (2021). Salinity stress in wheat (triticum aestivum l.) in the changing climate: adaptation and management strategies. Front. Agron. 3:661932. 10.3389/fagro.2021.661932 DOI

Fahad S., Bano A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot. 44 1433–1438.

Farid I., Hashem A. N., El-Aty A., Esraa A. M., Abbas M. H., Ali M. (2020). Integrated approaches towards ameliorating a saline sodic soil and increasing the dry weight of barley plants grown thereon. Environ. Biodivers. Soil Secur. 4 31–46.

Farouk S., Al-Huqail A. A. (2020). Sodium nitroprusside application regulates antioxidant capacity, improves phytopharmaceutical production and essential oil yield of marjoram herb under drought. Indust. Crops Prod. 158:113034. 10.1016/j.indcrop.2020.113034 DOI

Fatima A., Hussain S., Hussain S., Ali B., Ashraf U., Zulfiqar U., et al. (2021). Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agron. 11:1150. 10.3390/agronomy11061150 DOI

Hamilto P. B., Van-Slyke D. D. (1943). Amino acid determination with ninhydrin. J. Biol. Chem. 150 231–250.

Hasanuzzaman M., Bhuyan M. H. M., Nahar K., Hossain M. D., Mahmud J. A., Hossen M., et al. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agron 8:31. 10.3390/agronomy8030031 DOI

Hassan M. U., Aamer M., Chattha U. M., Haiying T., Khan I., Seleiman M. F., et al. (2021b). Sugarcane distillery spent wash (DSW) as a bio-nutrient supplement: a win-win option for sustainable crop production. Agron 11:183. 10.3390/agronomy11010183 DOI

Hassan M. U., Aamer M., Umer Chattha M., Haiying T., Shahzad B., Barbanti L., et al. (2020). The critical role of zinc in plants facing the drought stress. Agric 10:396. 10.3390/agriculture10090396 DOI

Hassan M. U., Chattha M. U., Khan I., Chattha M. B., Aamer M., Nawaz M., et al. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ. Sci. Poll. Res. 261 2673–12688. 10.1007/s11356-019-04892-x PubMed DOI

Hassan M. U., Chattha M. U., Khan I., Chattha M. B., Barbanti L., Aamer M., et al. (2021a). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosys. 155 211–234. 10.1080/11263504.2020.1727987 DOI

Hossain A., El Sabagh A., Bhatt R., Farooq M., Hasanuzzaman M. (2021). “Consequences of Salt and Drought Stresses in Rice and Their Mitigation Strategies through Intrinsic Biochemical Adaptation and Applying Stress Regulators,” in Sustainable Soil and Land Management and Climate Change, (Florida: CRC Press; ), 1–15.

Imran M., Ashraf M., Awan A. R. (2021). Growth, yield and arsenic accumulation by wheat grown in a pressmud amended salt-affected soil irrigated with arsenic contaminated water. Ecotox. Environ. Saf. 224:112692. 10.1016/j.ecoenv.2021.112692 PubMed DOI

Jones J. B., Case V. W. (1990). Sampling, handling, and analyzing plant tissue samples. Soil Test Plant Anal. 3 389–427. 10.2136/sssabookser3.3ed.c15 DOI

Kamran M., Parveen A., Ahmar S., Malik Z., Hussain S., Chattha M. S., et al. (2020). An Overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 21:148. 10.3390/ijms21010148 PubMed DOI PMC

Khaliq A., Zia U. H., Ali F., Aslam A., Matloob A., Navab A., et al. (2015). Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. Clean Soil Air Water. 43 1248–1258. 10.1002/clen.201400854 DOI

Kumar S., Meena R. S., Jinger D., Jatav H. S., Banjara T. (2017). Use of pressmud compost for improving crop productivity and soil health. Int. J. Chem. Stud. 5 384–389.

Kumar A., Lata C., Krishnamurthy S. L., Kumar A., Prasad K. R. K., Kulshreshtha N. (2017). Physiological and biochemical characterization of rice varieties under salt and drought stresses. J. Soil Sal. Water Qual. 9 167–177.

Kumar V., Chopra A. K. (2016). Effects of sugarcane pressmud on agronomical characteristics of hybrid cultivar of eggplant (Solanum melongena L.) under field conditions. Inter. J. Recycl. Organic Waste Agric. 5 149–162. 10.1007/s40093-016-0125-7 DOI

Larbi A., Kchaou H., Gaaliche B., Gargouri K., Boulal H., Morales F. (2020). Supplementary potassium and calcium improves salt tolerance in olive plants. Sci. Hort. 260:108912. 10.1016/j.scienta.2019.108912 DOI

Leal L. D. S. G., Pessoa L. G. M., de Oliveira J. P., Santos N. A., Silva L. F. D. S., Júnior G. B., et al. (2020). Do applications of soil conditioner mixtures improve the salt extraction ability of Atriplex nummularia at early growth stage? Int. J. Phytoremed. 22 482–489. 10.1080/15226514.2019.1678109 PubMed DOI

Lichtenthaler H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane. Methods Enzymol. 148 350–352. 10.1515/znc-2001-11-1225 PubMed DOI

Liu C., Mao B., Yuan D., Chu C., Duan M. (2021). Salt tolerance in rice: physiological responses and molecular mechanisms. Stress 1:25.

Machado R. M. A., Serralheiro R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticul 3:30. 10.3390/horticulturae3020030 DOI

Mahmood U., Hussain S., Hussain S., Ali B., Ashraf U., Zamir S., et al. (2021). Morpho-physio-biochemical and molecular responses of maize hybrids to salinity and waterlogging during stress and recovery phase. Plants. 10:1345. 10.3390/plants10071345 PubMed DOI PMC

Makarana G., Kumar A., Yadav R. K., Kumar R., Soni P. G., Lata C., et al. (2019). Effect of saline water irrigations on physiological, biochemical and yield attributes of dual purpose pearl millet (Pennisetum glaucum) varieties. Indian J. Agric. Sci. 89 624–633.

Mannan A. M., Abdul K. M., Moynul H. M., Abdul K. Q., Higuchi H., Nawata E. (2013). Response of soybean to salinity: ii. growth and yield of some selected genotypes. Trop. Agric. Dev. 57 31–40.

Mbarki S., Skalicky M., Vachova P., Hajihashemi S., Jouini L., Zivcak M., et al. (2020). Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9:526. 10.3390/plants9040526 PubMed DOI PMC

Meguekam T. L., Moualeu D. P., Taffouo V. D., Stützel H. (2021). Changes in plant growth, leaf relative water content and physiological traits in response to salt stress in peanut (Arachis hypogaea L.) varieties. Not. Bot. Hort. Agrobot. Cluj-Napoca. 49 12049–12049. 10.15835/nbha49112049 DOI

Mohanavelu A., Naganna S. R., Al-Ansari (2021). Irrigation Induced Salinity and Sodicity Hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agric 11:983. 10.3390/agriculture11100983 DOI

Monsur M. B., Datta J., Rohman M. D. M., Hasanuzzaman M., Hossain A., Islam M. S. (2022). “Salt-Induced Toxicity and Antioxidant Response in Oryza sativa: An Updated Review,” in Managing Plant Production Under Changing Environment, eds Hasanuzzaman M., Ahammed G. J., Nahar K. (Singapore: Springer; ), 10.1007/978-981-16-5059-8_4 DOI

Monsur M. B., Ivy N. A., Haque M. M., Hasanuzzaman M., El-Sabagh A., Rohman M. M. (2020). Oxidative stress tolerance mechanism in rice under salinity. Phyton Int. J. Exp. Bot. 89 497–517. 10.32604/phyton.2020.09144 DOI

Mostofa M. G., Fujita M. (2013). Salicylic acid alleviates copper toxicity in rice seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicol. 22 959–973. 10.1007/s10646-013-1073-x PubMed DOI

Muhammad D., Khattak R. A. (2019). Growth and nutrient concentrations of maize in pressmud treated saline-sodic soils. Soil Environ. 28 145–155.

Mukherjee S. P., Choudhuri M. A. (1983). Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58 166–170. 10.1111/j.1399-3054.1983.tb04162.x DOI

Nahar L., Aycan M., Hanamata S., Baslam M., Mitsui T. (2022). Impact of single and combined salinity and high-temperature stresses on agro-physiological, biochemical, and transcriptional responses in rice and stress-release. Plants 11:501. 10.3390/plants11040501 PubMed DOI PMC

Nakano Y., Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22 867–880.

Nawaz M., Chattha M. U., Chattha M. B., Ahmad R., Munir H., Usman M., et al. (2017). Assessment of compost as nutrient supplement for spring planted sugarcane (Saccharum officinarum L.). J. Anim. Plant Sci. 27 283–293.

Naz T., Mazhar Iqbal M., Tahir M., Hassan M. M., Rehmani M. I. A., Zafar M. I., et al. (2021). Foliar application of potassium mitigates salinity stress conditions in spinach (Spinacia oleracea L.) through reducing NaCl toxicity and enhancing the activity of antioxidant enzymes. Horticulturae 7:566. 10.3390/horticulturae7120566 DOI

Otie V., Udo I., Shao Y., Itam M. O., Okamoto H., An P., et al. (2021). Salinity Effects on Morpho-Physiological and Yield Traits of Soybean (Glycine max L.) as Mediated by Foliar Spray with Brassinolide. Plant. 10:541. 10.3390/plants10030541 PubMed DOI PMC

Parveen A., Liu W., Hussain S., Asghar J., Perveen S., Xiong Y. (2019). Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plant 8:431. 10.3390/plants8100431 PubMed DOI PMC

Prapagar K., Indraratne S. P., Premanandharajah P. (2012). Effect of soil amendments on reclamation of saline-sodic soil. Trop. Agric. Res. 23 168–176. 10.4038/tar.v24i2.8002 DOI

Rao K. M., Sresty T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157 113–128. 10.1016/s0168-9452(00)00273-9 PubMed DOI

Seleiman M. F., Aslam M. T., Alhammad B. A., Hassan M. U., Maqbool R., Chattha M. U., et al. (2022). Salinity stress in wheat: effects, mechanisms and management strategies. Phyton-Intern. J. Exper. Bot. 91 667–694.

Sheoran P., Kumar A., Singh A., Kumar A., Parjapat K., Sharma R., et al. (2021a). Pressmud alleviates soil sodicity stress in a rice–wheat rotation: Effects on soil properties, physiological adaptation and yield-related traits. Land Degrad. Devel. 32 1–14. 10.17221/478/2020-pse DOI

Sheoran P., Basak N., Kumar A., Yadav R. K., Singh R., Sharma R., et al. (2021b). Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India. Agric. Water Manag. 243:106492. 10.1016/j.agwat.2020.106492 DOI

Shrivastava P., Kumar R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22 123–131. 10.1016/j.sjbs.2014.12.001 PubMed DOI PMC

Singhal R. K., Saha D., Skalicky M., Mishra U. N., Chauhan J., Behera L. P., et al. (2021). Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Front. Plant Sci. 12:670369. 10.3389/fpls.2021.670369 PubMed DOI PMC

Soni P. G., Yadav R. K., Kumar A., Kumar R., Datt C., Paul K., et al. (2016). Sorghum fodder production and its nutrient composition under different residual sodium carbonate levels in irrigation water. Indian J. Anim. Nutr. 33 345–349. 10.5958/2231-6744.2016.00061.x DOI

Steel R. G. D., Torrie J. H., Dickey D. (1997). Principles and Procedures of Statistics: a Biometric Approach, 3rd Edn. New York, USA: McGraw-Hill Book Co, 663–666.

Sultan I., Khan I., Chattha M. U., Hassan M. U., Barbanti L., Calone R., et al. (2021). Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian J. Agron. 16:1810.

Taha R. S., Seleiman M. F., Alotaibi M., Alhammad B. A., Rady M. M., Mahdi A. H. A. (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agron 10:1741. 10.3390/agronomy10111741 DOI

Talaat N. B., Shawky B. T. (2022). Synergistic effects of salicylic acid and melatonin on modulating ion homeostasis in salt-stressed wheat (Triticum aestivum L.) plants by enhancing root H+-pump activity. Plants 11:416. 10.3390/plants11030416 PubMed DOI PMC

Velikova V., Yordanov I., Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151 59–66. 10.1016/s0168-9452(99)00197-1 DOI

Zhang X. Z. (1982). The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. Res. Methods Crop Physiol. 208–222. 10.1007/s11356-017-9977-2 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of cobalt and proline foliar application for alleviation of salinity stress in radish

. 2024 Apr 16 ; 24 (1) : 287. [epub] 20240416

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...