Impact of cobalt and proline foliar application for alleviation of salinity stress in radish
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38627664
PubMed Central
PMC11020780
DOI
10.1186/s12870-024-04998-6
PII: 10.1186/s12870-024-04998-6
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant enzymes, Cobalt sulfate, Proline, Radish, Salinity stress,
- MeSH
- antioxidancia * MeSH
- kobalt farmakologie MeSH
- prolin MeSH
- Raphanus * MeSH
- salinita MeSH
- solný stres MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- kobalt MeSH
- prolin MeSH
Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.
Zobrazit více v PubMed
Ali M. Assessment of maize genotypes for salt tolerance based on physiological indices. Pakistan J Bot. 2022;54:1613–1618.
Rafay M, Usman M. Soil salinity hinders plant growth and development and its remediation-A review. J Agric Res. 2023;61:189–200.
Khan RWA, Awan FS, Iqbal RK. Evaluation and identification of salt tolerant wheat through in vitro salinity induction in seeds. Pakistan J Bot. 2022;54:1987–93.
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50. doi: 10.1046/j.0016-8025.2001.00808.x. PubMed DOI
Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P. Ecophysiology and responses of plants under salt stress. New York, NY: Springer New York; 2013.
Dietz K-J, Turkan I, Krieger-Liszkay A. Redox-and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 2016;171:1541–50. doi: 10.1104/pp.16.00375. PubMed DOI PMC
Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, et al. Reactive oxygen species in plants: from source to sink. Antioxidants. 2022;11:225. doi: 10.3390/antiox11020225. PubMed DOI PMC
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot. 2018;154:134–42. doi: 10.1016/j.envexpbot.2018.05.003. PubMed DOI PMC
Foroumandi E, Nourani V, Kantoush SA. Investigating the main reasons for the tragedy of large saline lakes: Drought, climate change, or anthropogenic activities? A call to action. J Arid Environ. 2022;196:104652. doi: 10.1016/j.jaridenv.2021.104652. DOI
Vos R, Bellù LG. Global trends and challenges to Food and Agriculture into the 21st Century. Sustainable food and agriculture. Elsevier; 2019. pp. 11–30.
Ahammed GJ, Li X. Dopamine-induced abiotic stress tolerance in horticultural plants. Sci Hortic (Amsterdam) 2023;307:111506. doi: 10.1016/j.scienta.2022.111506. DOI
Hanaka A, Ozimek E, Reszczyńska E, Jaroszuk-Ściseł J, Stolarz M. Plant tolerance to drought stress in the presence of supporting bacteria and fungi: an efficient strategy in horticulture. Horticulturae. 2021;7:390. doi: 10.3390/horticulturae7100390. DOI
Drobek M, Frąc M, Cybulska J. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-a review. Agronomy. 2019;9:335. doi: 10.3390/agronomy9060335. DOI
Ehrlich PR, Ehrlich AH, Daily GC. Food Security, Population and Environment. Popul Dev Rev. 1993;19:1–32. doi: 10.2307/2938383. DOI
Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. Soil salinity under climate change: challenges for sustainable agriculture and food security. J Environ Manage. 2021;280:111736. doi: 10.1016/j.jenvman.2020.111736. PubMed DOI
Gad N. Interactive effect of salinity and cobalt on tomato plants. II. Some physiological parameters as affected by cobalt and salinity. Res J Agric Biol Sci. 2005;1:270–6.
Gad N, Hassan NM, Sayed S. Influence of Cobalt on tolerating climatic change (Salinity) in onion plant with reference to physiological and chemical approach. Plant Arch. 2020;20:1496–500.
Gad N, Abdel-Moez MR, Fekry Ali ME, Abou-Hussein SD. Increasing salt tolerance in cucumber by using cobalt. Middle East J Appl Sci. 2018;8:345–54.
Zahid A, ul din K, Ahmad M, Hayat U, Zulfiqar U, Askri SMH, et al. Exogenous application of sulfur-rich thiourea (STU) to alleviate the adverse effects of cobalt stress in wheat. BMC Plant Biol. 2024;24:126. doi: 10.1186/s12870-024-04795-1. PubMed DOI PMC
Ali Q, Zia MA, Kamran M, Shabaan M, Zulfiqar U, Ahmad M, et al. Nanoremediation for heavy metal contamination: a review. Hybrid Adv. 2023;4:100091. doi: 10.1016/j.hybadv.2023.100091. DOI
Hu X, Wei X, Ling J, Chen J. Cobalt: an essential micronutrient for Plant Growth? Front Plant Sci. 2021;12:768523. doi: 10.3389/fpls.2021.768523. PubMed DOI PMC
Hayat K, Bundschuh J, Jan F, Menhas S, Hayat S, Haq F, et al. Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Crit Rev Environ Sci Technol. 2020;50:1085–115. doi: 10.1080/10643389.2019.1646087. DOI
Husen A. The harsh environment and resilient plants: an overview. In: Husen A, editor. Harsh environment and plant resilience. Cham: Springer International Publishing; 2021. pp. 1–23.
Thakur P, Nayyar H. Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. Plant acclimation to environmental stress. Springer; 2012. pp. 29–69.
Devi EL, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, Devi CP, et al. Medicinal plants and Environmental challenges. Cham: Springer International Publishing; 2017. Adaptation strategies and defence mechanisms of plants during environmental stress; pp. 359–413.
Giordano M, Petropoulos SA, Rouphael Y. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture. 2021;11:463. doi: 10.3390/agriculture11050463. DOI
Nahar K, Hasanuzzaman M, Fujita M. Roles of Osmolytes in Plant Adaptation to Drought and Salinity. In: Iqbal N, Nazar RA, Khan N, editors. Osmolytes and plants acclimation to changing Environment: emerging Omics technologies. New Delhi: Springer India; 2016. pp. 37–68.
Atta N, Shahbaz M, Farhat F, Maqsood MF, Zulfiqar U, Naz N, et al. Proline-mediated redox regulation in wheat for mitigating nickel-induced stress and soil decontamination. Sci Rep. 2024;14:456. doi: 10.1038/s41598-023-50576-5. PubMed DOI PMC
Mansour MMF, Salama KHA. Proline and Abiotic stresses: responses and adaptation. In: Hasanuzzaman M, editor. Plant Ecophysiology and Adaptation under Climate Change: mechanisms and perspectives II. Singapore: Springer Singapore; 2020. pp. 357–97.
Zulfiqar F, Ashraf M. Proline alleviates abiotic stress Induced oxidative stress in plants. J Plant Growth Regul. 2023;42:4629–51. doi: 10.1007/s00344-022-10839-3. DOI
Spormann S, Nadais P, Sousa F, Pinto M, Martins M, Sousa B, et al. Accumulation of proline in plants under contaminated soils—are we on the same page? Antioxidants. 2023;12:666. doi: 10.3390/antiox12030666. PubMed DOI PMC
Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci. 2022;23:5186. doi: 10.3390/ijms23095186. PubMed DOI PMC
Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Velikova V, Sharkey TD, Loreto F. Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav. 2012;7:139–41. doi: 10.4161/psb.7.1.18521. PubMed DOI PMC
El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci. 2020;11:1127. doi: 10.3389/fpls.2020.01127. PubMed DOI PMC
Mahboob W, Khan MA, Shirazi MU. Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pak J Bot. 2016;48:861–7.
Soroori S, Danaee E, Hemmati K, Ladan Moghadam A. Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress. J Ornam Plants. 2021;11:13–30.
Hassan A, Fasiha Amjad S, Hamzah Saleem M, Yasmin H, Imran M, Riaz M, et al. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci. 2021;28:4276–90. doi: 10.1016/j.sjbs.2021.03.045. PubMed DOI PMC
Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, et al. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric. 2021;101:2027–41. doi: 10.1002/jsfa.10822. PubMed DOI
Sultan I, Khan I, Chattha MU, Hassan MU, Barbanti L, Calone R, et al. Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Ital J Agron. 2021;16:1–11.
Ali MS, Zahid ZH, Siddike MN, Bappi ZH, Payel NA, Islam T, et al. Effect of different levels of organic fertilizer on growth, yield and economic benefits of radish (Raphanus sativus L) J Biosci Agric Res. 2023;30:2533–40. doi: 10.18801/jbar.300223.306. DOI
Gamba M, Asllanaj E, Raguindin PF, Glisic M, Franco OH, Minder B, et al. Nutritional and phytochemical characterization of radish (Raphanus sativus): a systematic review. Trends Food Sci Technol. 2021;113:205–18. doi: 10.1016/j.tifs.2021.04.045. DOI
Page AL, Miller RH, Keeny DR. Soil pH and lime requirement. In: Page AL, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2/Agronomy Monographs. 2nd edition. Madison: American Society of Agronomy, Inc. and Soil Science Society of America, Inc.; 1983. pp. 199–208.
Estefan G, Sommer R, Ryan J. Methods of Soil, Plant, and Water Analysis: A manual for the West Asia and North Africa region. 3rd edition. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA); 2013.
Rhoades JD, et al. Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis, Part 3, Chemical methods. Madison, WI, USA: Soil Science Society of America; 1996. pp. 417–35.
Nelson DW, Sommers LE, Total, Carbon . Organic Carbon, and Organic Matter. In: Page AL, editor. Methods of Soil Analysis: part 2 Chemical and Microbiological properties. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America; 1982. pp. 539–79.
Bremner M, et al. Nitrogen-total. In: Sumner DL, Sparks AL, Page PA, Helmke RH, Loeppert NP, Soltanpour AM, et al., editors. Methods of Soil Analysis Part 3. Madison, WI, USA: John Wiley & Sons, Inc; 1996. pp. 1085–121.
Kuo S, et al. Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis Part 3: Chemical methods. Madison, Wisconsin: John Wiley & Sons, Ltd: SSSA; 2018. pp. 869–919.
Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological properties. Madison, WI, USA: John Wiley & Sons, Ltd; 2016. pp. 1022–30.
Donald AH, Hanson D. Determination of potassium and sodium by flame emmision spectrophotometery. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. 1st edition. Washington, D.C.: CRC Press; 1998. pp. 153–5.
Gee GW, Bauder JW. Particle-size Analysis. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Madison, WI, USA: John Wiley & Sons, Inc.; 2018. pp. 383–411.
Boutraa T, Akhkha A, Al-Shoaibi AA, Alhejeli AM. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J Taibah Univ Sci. 2010;3:39–48. doi: 10.1016/S1658-3655(12)60019-3. DOI
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidse in beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Durak I, Yurtarslanl Z, Canbolat O, Akyol Ö. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta. 1993;214:103–4. doi: 10.1016/0009-8981(93)90307-P. PubMed DOI
Cakmak I, Strbac D, Marschner H. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot. 1993;44:127–32. doi: 10.1093/jxb/44.1.127. DOI
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–80.
Hernández JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 2002;115:251–7. doi: 10.1034/j.1399-3054.2002.1150211.x. PubMed DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–7. doi: 10.1007/BF00018060. DOI
Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106:207–12. doi: 10.1016/0003-2697(80)90139-6. PubMed DOI
Carlberg I, Mannervik B. Glutathione reductase. Methods in Enzymology. Elsevier Inc.; 1985. pp. 484–90. PubMed
Kampfenkel K, Vanmontagu M, Inzé D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem. 1995;225:165–7. doi: 10.1006/abio.1995.1127. PubMed DOI
Lutts S, Kinet JM, Bouharmont J. NaCl-induced Senescence in leaves of Rice (Oryza sativa L.) cultivars Differing in Salinity Resistance. Ann Bot. 1996;78:389–98. doi: 10.1006/anbo.1996.0134. DOI
Loka DA, Oosterhuis MD, Ritchie GL. Water stress and reproductive development in cotton. Stress Physiol Cott. 2011;7:37–72.
Barrs HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci. 1962;15:413–28. doi: 10.1071/BI9620413. DOI
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. 3rd edition. Singapore: McGraw Hill Book International Co.; 1997.
OriginLab Corporation . OriginPro. Northampton. MA, USA: OriginLab; 2021.
Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, et al. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front Plant Sci. 2023;14:1241736. doi: 10.3389/fpls.2023.1241736. PubMed DOI PMC
Godfray HCJ, Garnett T. Food security and sustainable intensification. Philos Trans R Soc B Biol Sci. 2014;369:20120273. doi: 10.1098/rstb.2012.0273. PubMed DOI PMC
Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. In: J Exp Bot. 2006. p. 1025–43. PubMed
Abdelaal K, Alsubeie MS, Hafez Y, Emeran A, Moghanm F, Okasha S, et al. Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: control strategies and management. Agriculture. 2022;12:2084. doi: 10.3390/agriculture12122084. DOI
Khan I, Muhammad A, Chattha MU, Skalicky M, Bilal Chattha M, Ahsin Ayub M, et al. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Front Plant Sci. 2022;13:840900. doi: 10.3389/fpls.2022.840900. PubMed DOI PMC
Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, et al. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 2015;75:391–404. doi: 10.1007/s10725-014-0013-y. DOI
Yildrim E, Donmez MF, Turan M. Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr. 2008;31:2059–74. doi: 10.1080/01904160802446150. DOI
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020;156:64–77. doi: 10.1016/j.plaphy.2020.08.042. PubMed DOI
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. Physiol Plant. 2021;171:578–94. doi: 10.1111/ppl.13185. PubMed DOI
Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technology. 2015;14:407–26. doi: 10.1007/s11157-015-9372-8. DOI
Akeel A, Jahan A. Contaminants in Agriculture. Cham: Springer International Publishing; 2020. Role of cobalt in plants: its stress and alleviation; pp. 339–57.
Ali S, Gill RA, Mwamba TM, Zhang N, Lv MT, Ul Hassan Z, et al. Differential cobalt-induced effects on plant growth, ultrastructural modifications, and antioxidative response among four Brassica napus (L.) cultivars. Int J Environ Sci Technol. 2018;15:2685–700. doi: 10.1007/s13762-017-1629-z. DOI
Roychoudhury A, Chakraborty S. Cobalt and molybdenum: deficiency, toxicity, and nutritional role in plant growth and development. Plant nutrition and food security in the era of climate change. Elsevier; 2022. pp. 255–70.
Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S. Effects of foliar application of cobalt oxide nanoparticles on growth, photosynthetic pigments, oxidative indicators, non-enzymatic antioxidants and compatible osmolytes in canola (Brassica napus L). Acta Biol Cracov Ser Bot. 2019;61.
Brengi SH, Khedr AAEM, Abouelsaad IA. Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. J Saudi Soc Agric Sci. 2022;21:51–60.
Tourky SMN, Shukry WM, Hossain MA, Siddiqui MH, Pessarakli M, Elghareeb EM. Cobalt enhanced the drought-stress tolerance of rice (Oryza sativa L.) by mitigating the oxidative damage and enhancing yield attributes. South Afr J Bot. 2023;159:191–207. doi: 10.1016/j.sajb.2023.05.035. DOI
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, et al. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int J Mol Sci. 2021;22:9326. doi: 10.3390/ijms22179326. PubMed DOI PMC
Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci. 2015;16:13561–78. doi: 10.3390/ijms160613561. PubMed DOI PMC
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, et al. Glutathione: role in oxidative/nitrosative stress, antioxidant defense, and treatments. ChemistrySelect. 2021;6:4566–90. doi: 10.1002/slct.202100773. DOI
Salam A, Afridi MS, Khan AR, Azhar W, Shuaiqi Y, Ulhassan Z et al. Cobalt induced toxicity and tolerance in plants: insights from omics approaches. Heavy Met Toxic Toler Plants Biol Omi Genet Eng Approach. 2023;:207–29.
Gómez-Merino FC, Trejo-Téllez LI. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. Biot Abiotic Stress Toler Plants. 2018;:137–72.
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52:39. doi: 10.1186/s40659-019-0246-3. PubMed DOI PMC
Siddique A, Kandpal G, Kumar P. Proline accumulation and its defensive role under diverse stress condition in plants: an overview. J Pure Appl Microbiol. 2018;12:1655–9. doi: 10.22207/JPAM.12.3.73. DOI
Mansour MMF, Ali EF. Evaluation of proline functions in saline conditions. Phytochemistry. 2017;140:52–68. doi: 10.1016/j.phytochem.2017.04.016. PubMed DOI
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7:1456–66. doi: 10.4161/psb.21949. PubMed DOI PMC
Khanna-Chopra R, Semwal VK, Lakra N, Pareek A. Proline–A key regulator conferring plant tolerance to salinity and drought. Plant tolerance to environmental stress. CRC; 2019. pp. 59–80.
Hossain MA, Hoque MA, Burritt DJ, Fujita M. Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. Oxidative damage to plants. Elsevier; 2014. pp. 477–522.
Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P. Others. Salinity stress and salt tolerance. Abiotic Stress plants-mechanisms Adapt. 2011;1:21–38.
Yaqoob H, Akram NA, Iftikhar S, Ashraf M, Khalid N, Sadiq M, et al. Seed pretreatment and foliar application of proline regulate morphological, physio-biochemical processes and activity of antioxidant enzymes in plants of two cultivars of Quinoa (Chenopodium quinoa Willd) Plants. 2019;8:588. doi: 10.3390/plants8120588. PubMed DOI PMC
Leiva-Ampuero A, Agurto M, Matus JT, Hoppe G, Huidobro C, Inostroza-Blancheteau C, et al. Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. Cv. Micro-tom) PeerJ. 2020;8:e9742. doi: 10.7717/peerj.9742. PubMed DOI PMC
Zahedi SM, Abolhassani M, Hadian-Deljou M, Feyzi H, Akbari A, Rasouli F, et al. Proline-functionalized graphene oxide nanoparticles (GO-pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera l. Cv sultana) Plant Stress. 2023;7:100128. doi: 10.1016/j.stress.2022.100128. DOI
Irshad I, Anwar-Ul-Haq M, Akhtar J, Maqsood M. Enhancing maize growth and mitigating salinity stress through foliar application of proline and glycine betaine. Pakistan J Bot. 2024;56:9–17.
Semida WM, Abdelkhalik A, Rady MOA, Marey RA, Abd El-Mageed TA. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic (Amsterdam) 2020;272:109580. doi: 10.1016/j.scienta.2020.109580. DOI
Shafi A, Zahoor I, Mushtaq U. Proline accumulation and oxidative stress: diverse roles and mechanism of tolerance and adaptation under salinity stress. Salt stress, microbes, and plant interactions: mechanisms and molecular approaches. Springer; 2019. pp. 269–300.
Rohman MM, Begum S, Akhi AH, Ahsan A, Uddin MS, Amiruzzaman M, et al. Protective role of antioxidants in maize seedlings under saline stress: exogenous proline provided better tolerance than betaine. Bothalia J. 2015;45:17–35.
Hussain RA, Anjum S, Khalid MA, Saqib MF, Zakir M. Plant abiotic stress tolerance. Cham: Springer International Publishing; 2019. Oxidative stress and antioxidant defense mechanisms in plants under salt stress; pp. 191–205.
Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19:998–1011. doi: 10.1089/ars.2012.5074. PubMed DOI PMC
Khalid M, Rehman HM, Ahmed N, Nawaz S, Saleem F, Ahmad S, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. Int J Mol Sci. 2022;23:12913. doi: 10.3390/ijms232112913. PubMed DOI PMC