Comparing Salt Tolerance at Seedling and Germination Stages in Local Populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L

. 2020 Apr 19 ; 9 (4) : . [epub] 20200419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32325817

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 NutRisk Centre

Salt stress is one of the most serious environmental stressors that affect productivity of salt-sensitive crops. Medicago ciliaris is an annual legume whose adaptation to agroclimatic conditions has not been well described. This study focused on the salinity tolerance of M. ciliaris genotypes compared to M. intertexta and M. scutellata in terms of plant growth, physiology, and biochemistry. Salt tolerance was determined at both germination and early seedling growth. Germination and hydroponic assays were used with exposing seeds to 0, 50, 100, 150, and 200 mM NaCl. Among seven genotypes of M. ciliaris studied, Pop1, 355, and 667, were most salt tolerant. Populations like 355 and 667 showed marked tolerance to salinity at both germination and seedling stages (TI ≤1, SI(FGP) > 0 increased FGP ≥ 20% and SI(DW) < 0 (DW decline ≤ 20%); at 100 mM); while Pop1 was the most salt tolerant one at seedling stages with (TI =1.79, SI(FGP) < 0 decline of FGP ≤ 40% and with increased DW to 79%); at 150 mM NaCl). The genotypes, 306, 773, and M. scutellata, were moderately tolerant to salt stress depending on salt concentration. Our study may be used as an efficient strategy to reveal genetic variation in response to salt stress. This approach allows selection for desirable traits, enabling more efficient applications in breeding methods to achieve stress-tolerant M. ciliaris populations.

Zobrazit více v PubMed

Shokat S., Großkinsky D.K. Tackling salinity in sustainable agriculture-What developing countries may learn from approaches of the developed world. Sustainability. 2019;11:4558. doi: 10.3390/su11174558. DOI

Minhas P.S., Ramos T.B., Ben-Gal A., Pereira L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020;227:105832. doi: 10.1016/j.agwat.2019.105832. DOI

Jacobsen S.E., Jensen C.R., Liu F. Improving crop production in the arid Mediterranean climate. Field Crop. Res. 2012;128:34–47. doi: 10.1016/j.fcr.2011.12.001. DOI

Srivastava N. Environmental Concerns and Sustainable Development. Springer; Singapore: 2020. Reclamation of Saline and Sodic Soil Through Phytoremediation; pp. 279–306.

Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC

Louati D., Majdoub R., Rigane H., Abida H. Effects of Irrigating with Saline Water on Soil Salinization (Eastern Tunisia) Arab. J. Sci. Eng. 2018;43:3793–3805. doi: 10.1007/s13369-018-3215-1. DOI

Mbarki S., Sytar O., Cerda A., Zivcak M., Rastogi A., He X., Zoghlami A., Abdelly C., Brestic M. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms. Springer International Publishing; Cham, Switzerland: 2018. Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants; pp. 85–136.

Safdar H., Amin A., Shafiq Y., Ali A., Yasin R. A review: Impact of salinity on plant growth. Nat. Sci. 2019;17:34–40. doi: 10.7537/marsnsj170119.06. DOI

Acosta-motos J.R., Penella C., Hernández J.A., Sánchez-blanco M.J., Navarro J.M., Gómez-bellot M.J. Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. Agronomy. 2020;10:194. doi: 10.3390/agronomy10020194. DOI

Kumar A., Kumar A., Mann A., Devi G., Sharma H., Singh R., Sanwal S.K. Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer; Singapore: 2019. Phytoamelioration of the Salt-Affected Soils Through Halophytes; pp. 313–326.

Ismail S., Rao N.K., Dagar J.C. Research Developments in Saline Agriculture. Springer; Berlin, Germany: 2019. Identification, Evaluation, and Domestication of Alternative Crops for Saline Environments; pp. 505–536.

Abiala M.A., Abdelrahman M., Burritt D.J., Tran L.S.P. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad. Dev. 2018;29:3812–3822. doi: 10.1002/ldr.3095. DOI

Mbarki S., Cerdà A., Zivcak M., Brestic M., Rabhi M., Mezni M., Jedidi N., Abdelly C., Pascual J.A. Alfalfa crops amended with MSW compost can compensate the effect of salty water irrigation depending on the soil texture. Process. Saf. Environ. Prot. 2018;115:8–16. doi: 10.1016/j.psep.2017.09.001. DOI

Morton M.J.L., Awlia M., Al-Tamimi N., Saade S., Pailles Y., Negrão S., Tester M. Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant. J. 2019;97:148–163. doi: 10.1111/tpj.14189. PubMed DOI PMC

Venâncio C., Pereira R., Lopes I. The influence of salinization on seed germination and plant growth under mono and polyculture. Environ. Pollut. 2020;260:113993. doi: 10.1016/j.envpol.2020.113993. PubMed DOI

Hernández J.A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019;20:2408. doi: 10.3390/ijms20102408. PubMed DOI PMC

Kotula L., Kwa H.Y., Nichols P.G.H., Colmer T.D. Tolerance and recovery of the annual pasture legumes Melilotus siculus, Trifolium michelianum and Medicago polymorpha to soil salinity, soil waterlogging and the combination of these stresses. Plant. Soil. 2019;444:267–280. doi: 10.1007/s11104-019-04254-z. DOI

Smith A.P., Moore A.D. Whole farm implications of lucerne transitions in temperate crop-livestock systems. Agric. Syst. 2020;177:102686. doi: 10.1016/j.agsy.2019.102686. DOI

Nedjimi B., Zemmiri H. Salinity Effects on Germination of Artemisia herba–alba Asso: Important Pastoral Shrub from North African Rangelands. Rangel. Ecol. Manag. 2019;72:189–194. doi: 10.1016/j.rama.2018.07.002. DOI

Natasha K. Effect of sodium chloride, potassium chloride on germination and growth of Foxtail millet (Setaria italica L.) Pure Appl. Biol. 2019;8:1398–1407. doi: 10.19045/bspab.2019.80080. DOI

Bouslama M., Denden M., Hajlaoui H. Etude de la variabilité intraspécifique de tolérance au stress salin du pois chiche (Cicer arietinum L.) au stade germination. Tropicultura. 2007;25:168–173.

Ouerghi K., Abdi N., Maazaoui H., Hmissi I., Bouraoui M., Sifi B. Physiological and morphological characteristics of pea (Pisum sativum L.) seeds under salt stress. J. New Sci. 2016;28:1559–1565.

Debez A., Ben Slimen I.D., Bousselmi S., Atia A., Farhat N., El Kahoui S., Abdelly C. Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant. Biosyst. 2019;153:1–9. doi: 10.1080/11263504.2019.1651777. DOI

Rahman M.M., Mostofa M.G., Rahman M.A., Miah M.G., Saha S.R., Karim M.A., Keya S.S., Akter M., Islam M., Tran L.S.P. Insight into salt tolerance mechanisms of the halophyte Achras sapota: An important fruit tree for agriculture in coastal areas. Protoplasma. 2019;256:181–191. doi: 10.1007/s00709-018-1289-y. PubMed DOI

Zulfiqar F., Akram N.A., Ashraf M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta. 2020;251:3. doi: 10.1007/s00425-019-03293-1. PubMed DOI

Nawaz K., Hussain K., Majeed A., Khan F., Afghan S., Ali K. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biotechnol. 2010;9:5475–5480.

Bayuelo-Jiménez J.S., Craig R., Lynch J.P. Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop. Sci. 2002;42:1584–1594. doi: 10.2135/cropsci2002.1584. DOI

Rashid M.H.O., Islam S., Bari M. In vitro screening for salt stress tolerance of native and exotic potato genotypes by morphological and physiological parameters. J. Bio-Sci. 2019;28:21–32. doi: 10.3329/jbs.v28i0.44707. DOI

Taffouo V., Meguekam L., Kenne M., Yayi E., Magnitsop A., Akoa A., Ourry A. Germination et accumulation des métabolites chez les plantules de légumineuses cultivées sous stress salin. Agron. Afr. 2009;20:129–139. doi: 10.4314/aga.v20i2.1742. DOI

Ibrahim M.H., Abas N.A., Zahra S.M. Impact of Salinity Stress on Germination of Water Spinach (Ipomoea aquatica) Annu. Res. Rev. Biol. 2019;31:1–12. doi: 10.9734/arrb/2019/v31i530060. DOI

Lovato M.B., Martins P.S. Genetic variability in salt tolerance during germination of Stylosanthes humilis H.B.K. and association between salt tolerance and isozymes. Braz. J. Genet. 1997;20:435–441. doi: 10.1590/S0100-84551997000300014. DOI

Kayess M.O., Rahman M.L., Ahmed K., Khan M.R., Hossan M.S., Hossain M.S., Khanam M.M., Chandra Pal D. Effect of Salinity Stress on Different Root and Shoot Traits of Selected Tomato Cultivars. Asian J. Adv. Res. Rep. 2020;8:1–9. doi: 10.9734/ajarr/2020/v8i130188. DOI

Farissi M., Ghoulam C., Bouizgaren A. Changes in water deficit saturation and photosynthetic pigments of Alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J. 2013;3:29–35.

Moghaddam M., Farhadi N., Panjtandoust M., Ghanati F. Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant. Biosyst. 2019;153:1–8. doi: 10.1080/11263504.2019.1701122. DOI

Pujol J.A., Calvo J.F., Ramírez-Díaz L. Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann. Bot. 2000;85:279–286. doi: 10.1006/anbo.1999.1028. DOI

Mirza H., Kamrun N., Masayuki F., Hirosuke O., Islam T.M., Shahzad B., Fahad S., Tanveer M., Saud S., Khan I.A. Approaches for Enhancing Abiotic Stress Tolerance in Plants. CRC Press; Boca Raton, FL, USA: 2019. Plant Responses and Tolerance to Salt Stress; pp. 61–78.

Shoukat E., Ahmed M.Z., Abideen Z., Azeem M., Ibrahim M., Gul B., Khan M.A. Short and long term salinity induced differences in growth and tissue specific ion regulation of Phragmites karka. Flora Morphol. Distrib. Funct. Ecol. Plants. 2020;263:151550. doi: 10.1016/j.flora.2020.151550. DOI

Chartzoulakis K., Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. Amst. 2000;86:247–260. doi: 10.1016/S0304-4238(00)00151-5. DOI

Mahdavi B., Sanavy S.A.M.M. Germination and seedling growth in grasspea (Lathyrus sativus) cultivars under salinity conditions. Pak. J. Biol. Sci. 2007;10:273–279. doi: 10.3923/pjbs.2007.273.279. PubMed DOI

Li R., Shi F., Fukuda K., Yang Y. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.) Soil Sci. Plant. Nutr. 2010;56:725–733. doi: 10.1111/j.1747-0765.2010.00506.x. DOI

Ranjbar G.H. Anagholi, a Evaluation of physiological indices of salinity tolerance in forage Sorghum (Sorghum bicolor) lines. Int. Res. J. Appl. Basic Sci. 2012;3:305–308.

Benabderrahim M.A., Guiza M., Haddad M. Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.) Acta Physiol. Plant. 2020;42:5. doi: 10.1007/s11738-019-2993-8. DOI

Bhatt A., Bhat N.R., Santo A., Phartyal S.S. Influence of Temperature, Light and Salt on the Germination of Deverra Triradiata Seeds. Seed Sci. Technol. 2019;47:25–31. doi: 10.15258/sst.2019.47.1.03. DOI

Bukhari S.A.H., Peerzada A.M., Javed M.H., Dawood M., Hussain N., Ahmad S. Agronomic Crops. Springer; Singapore: 2019. Growth and Development Dynamics in Agronomic Crops Under Environmental Stress; pp. 83–114.

Thouraya R., Imen I., Imen H., Riadh I., Ahlem B., Hager J. Effet du stress salin sur le comportement physiologique et métabolique de trois variétés de piment (Capsicum annuum L.) J. Appl. Biosci. 2013;66:5060. doi: 10.4314/jab.v66i0.95004. DOI

Wu H., Guo J., Wang C., Li K., Zhang X., Yang Z., Li M., Wang B. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front. Plant. Sci. 2019;10:530. doi: 10.3389/fpls.2019.00530. PubMed DOI PMC

Naeem M.S., Jin Z.L., Wan G.L., Liu D., Liu H.B., Yoneyama K., Zhou W.J. 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.) Plant. Soil. 2010;332:405–415. doi: 10.1007/s11104-010-0306-5. DOI

Poór P., Czékus Z., Ördög A. Plant Signaling Molecules. Elsevier; Amsterdam, The Netherlands: 2019. Role and Regulation of Glucose as a Signal Molecule to Salt Stress; pp. 193–205.

Jawahar G., Rajasheker G., Maheshwari P., Punita D.L., Jalaja N., Kumari P.H., Kumar S.A., Afreen R., Karumanchi A.R., Rathnagiri P., et al. Plant Signaling Molecules. Elsevier; Amsterdam, The Netherlands: 2019. Osmolyte Diversity, Distribution, and Their Biosynthetic Pathways; pp. 449–458.

Lucho S.R., do Amaral M.N., Auler P.A., Bianchi V.J., Ferrer M.Á., Calderón A.A., Braga E.J.B. Salt Stress-Induced Changes in In Vitro Cultured Stevia rebaudiana Bertoni: Effect on Metabolite Contents, Antioxidant Capacity and Expression of Steviol Glycosides-Related Biosynthetic Genes. J. Plant. Growth Regul. 2019;38:1341–1353. doi: 10.1007/s00344-019-09937-6. DOI

Hamrouni L., Hanana M., Abdelly C., Ghorbel A. Exclusion du chlorure et inclusion du sodium: Deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. sylvestris (var. ’séjnène’) Biotechnol. Agron. Soc. Environ. 2011;15:387–400.

Shafi A., Zahoor I., Mushtaq U. Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Springer; Singapore: 2019. Proline Accumulation and Oxidative Stress: Diverse Roles and Mechanism of Tolerance and Adaptation Under Salinity Stress; pp. 269–300.

Hasanuzzaman M., Fujita M., Oku H., Islam M.T., Khanna-Chopra R., Kumar Semwal V., Lakra N., Pareek A. Plant Tolerance to Environmental Stress. CRC Press; Boca Raton, FL, USA: 2019. Proline—A Key Regulator Conferring Plant Tolerance to Salinity and Drought; pp. 59–80.

Forlani G., Bertazzini M., Cagnano G. Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant. Biol. 2019;21:336–342. doi: 10.1111/plb.12916. PubMed DOI

Cheima J. Genetic diversity of pod traits in local populations of Medicago ciliaris L. Iosr J. Agric. Vet. Sci. 2012;1:44–48. doi: 10.9790/2380-0134448. DOI

Roberts S.J., Koenraadt H. International Rules for Seed Testing. ISTA(The International Seed Testing Association); Basserdorf, Switzerland: 2020. Validated Seed Health Testing Methods; pp. 1–276. DOI

Hoagland D.R., Arnon D.I. The Water-Culture Method for Growing Plants Without Soil. Volume 347. Circular Agricultural Experiment Station, University of California; Berkeley, CA, USA: 1950. p. 32. No.2nd edit.

Lichtenthaler H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987;148:350–382.

Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant. Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Do B.C., Dang T.T., Berrin J.G., Haltrich D., To K.A., Sigoillot J.C., Yamabhai M. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Microb. Cell Fact. 2009;8:59. doi: 10.1021/ac60111a017. PubMed DOI PMC

El Goumi Y., Fakiri M., Lamsaouri O., Benchekroun M. Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars. J. Mater. Environ. Sci. 2014;5:625–632.

Smilauer P., Leps J. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge University Press; Cambridge, UK: 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...