plant growth regulators
Dotaz
Zobrazit nápovědu
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Biopriming seeds with beneficial bacteria has potential to enhance seed germination. Therefore, in this investigation, five sulphur-oxidizing bacterial cultures, viz., Pantoea dispersa SOB2, Bacillus velezensis SN06, Bacillus cereus SN20, Bacillus tropicus SN16, and Bacillus megaterium SN11, were evaluated for different plant growth-promoting traits and their impact on Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Among these, three bacterial cultures Pantoea dispersa SOB2, Bacillus velezensis SN06, and Bacillus megaterium SN11 evinced potential for mineral solubilization on solid medium where Pantoea dispersa SOB2 had the maximum solubilization indices-3.06, 5.14, and 2.48 for phosphate, zinc, and potassium respectively. The culture also displayed higher indole acetic acid (113.12 μg/mL), gibberellic acid (162.66 μg/mL), ammonia (5.23 μg/mL), and siderophore (69.53%) production than other bacterial cultures whereas Bacillus cereus SN20 showed maximum exopolysaccharide production (9.26 g/L). Bacterial culture Pantoea dispersa SOB2 significantly ameliorated the germination rate (3.73 no./day) and relative seed germination (208%) of Brassica juncea L., while Bacillus velezensis SN06 and Bacillus cereus SN20 followed with germination rate and relative seed germination of 2.86 no./day and 207%, respectively. Pantoea dispersa SOB2 displayed lowest mean germination time 2.91 days followed by Bacillus megaterium SN11 with 3.19 days. Biopriming with sulphur-oxidizing bacterial cultures, germination parameters of Vigna radiata L. were also markedly improved. Pantoea dispersa SOB2 demonstrated the highest germination rate (6.72 no./day), relative seed germination (115.56%), and minimum mean generation time (1.73 days). Bacillus velezensis SN06 inoculation had a beneficial effect on the seedling growth of Vigna radiata L., whereas Pantoea dispersa SOB2 greatly aided the seedling growth of Brassica juncea L. Results corroborated a prominent positive correlation between seed germination and plant growth-promoting traits. This is the first study on Pantoea dispersa as sulphur oxidizer, displaying plant growth promoting traits and seed germination potential. The potent sulphur-oxidizing bacterial cultures possessing plant growth promoting activities enhanced seed germination under in vitro conditions that could be further explored in field as biofertilizers to enhance the growth and yield of Brassica juncea L. and Vigna radiata L. crop.
- MeSH
- Bacillus * metabolismus MeSH
- Bacteria * metabolismus MeSH
- hořčice rodu Brassica * růst a vývoj mikrobiologie MeSH
- klíčení * MeSH
- kyseliny indoloctové metabolismus MeSH
- oxidace-redukce MeSH
- Pantoea metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná * mikrobiologie růst a vývoj MeSH
- síra * metabolismus MeSH
- vigna * růst a vývoj mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
AIM: This study aimed to investigate the phytochemical composition of Psychotria montana extract (PME) and evaluate its inhibitory effects on MCF7 breast cancer cells. METHODS: The chemical composition of PME was analyzed using UPLC-QToF-MS. The effects of PME on cell proliferation were evaluated using the MTT assay. Flow cytometry was used for cell cycle and apoptosis analysis. The effects of PME on the transcription of cell cycle control genes were assessed using real-time PCR. RESULTS: UPLC-QToF-MS analysis revealed major compounds of PME, including terpenoids and flavonoids, with the potential to inhibit proliferation, migration, and induce apoptosis in MCF7 cancer cells. PME effectively suppressed MCF7 cell proliferation under 2D culture, with a low IC50 value of 34.7 μg/ml. PME also hindered cell migration (p < 0.01) and reduced spheroid number (p < 0.001) and size (p < 0.001) in serum-free 3D culture. Apoptosis analysis via nuclear staining with DAPI and flow cytometry revealed an increase in the number of apoptotic cells after PME treatment (p < 0.001). Additionally, the PME induced cell cycle arrest at the G0/G1 phase (p < 0.05). PME altered the expression of cell cycle control genes (cyclins and CDKs) as well as cancer suppressor genes including p16, p27, and p53 at the transcriptional level (mRNA). The results of molecular docking suggest that the compounds present in PME exhibit a high binding affinity for CDK3, CDK4, CDK6, and CDK8 proteins, which are essential regulators of the cell cycle. CONCLUSION: Psychotria montana has the potential to inhibit cancer cells by inducing apoptosis and halting the cell cycle of MCF7 breast cancer cells.
- MeSH
- apoptóza * účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- fytogenní protinádorové látky farmakologie chemie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádory prsu * farmakoterapie patologie genetika metabolismus MeSH
- počítačová simulace MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk * účinky léků MeSH
- Psychotria * chemie MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity. Used as biostimulants to improve plant growth, they also increase plant resistance to abiotic and biotic stresses through the generation of a primed status in the plant, leading to a better and faster response to stress. In this review, we have focused on the importance of a balanced redox status for the adequate performance of the plant and revisited the different antioxidant mechanisms supporting the biocontrol effect of beneficial microbes through the adjustment of the levels of reactive oxygen species (ROS). In addition, the different tools for the analysis of antioxidant responses and redox regulation have been evaluated. The importance of redox regulation in the activation of the immune responses through different mechanisms, such as transcriptional regulation, retrograde signaling, and post-translational modification of proteins, emerges as an important research goal for understanding the biocontrol activity of the beneficial microbes.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Termínem gibberellin-regulated proteins je označována skupina alergenů zkoumaná v posledních letech v souvislosti se zkříženými pylově potravinovými alergiemi (pollen/food allergy syndrome). Gibereliny jsou skupinou fytohormonů figurující v ochraně rostlin, mají baktericidní, virucidní a fungicidní účinky. Fungují jako růstové hormony a vylučují se při zrání, ale i při stresu rostlin. Jedná se o antimikrobiální peptidy o molekulové hmotnosti 7–8 kDa bohaté na cystein, jejichž struktura je obdobná v celé řadě vyšších rostlin. Díky vysokému obsahu cysteinu jsou termostabilní a acidorezistentní, proto jsou považovány za rizikové potravinové alergeny, schopné vyvolat závažné alergické reakce. Klinické projevy potravinové alergie na gibberellin-regulated proteiny jsou poměrně charakteristické, jsou jimi otok obličeje (zvláště očních víček) a laryngeální otok. Alergické reakce bývají se závažnějším průběhem zvláště tehdy, pokud jsou přítomny další faktory (tělesná náma- ha, léčba nesteroidními antiflogistiky, inhibitory proteinové pumpy, vliv alkoholu, infekce, menstruace apod.). Dosud bylo identifikováno 9 těchto alergenních proteinů různých rostlinných zdrojů pylových Cry j 7, Cup s 7, Jun a 7, potravinových Pru p 7, Pru m 7, Pun g 7, Cit s 7, Pru av 7, Cap a 7. Byly popsány i dvě nealergenní molekuly – applemaclein, snakin-1. K primární senzibilizaci dochází nejspíše prostřednictvím inhalační alergie na pyl cypřišovitých.
Gibberellin-regulated proteins are a group of allergens investigated in recent years in relation with pollen/food allergy syndrome. Gibberellins are a group of phytohormones, which play role in plant protection, have bactericidal, virucidal and fungicidal effects, function as growth hormones and are secreted during ripening process, but also during plant stress. These proteins are antimicrobial peptides with a molecular weight of 7–8 kDa, rich in cysteine, which stucture is very conserved across a wide number of higher plants. Due to their high cysteine content, they are thermostable and acidoresistant, which is why they are considered as a risky food allergens capable of causing serious allergic reactions. Clinical symptoms of gibberellin-regulated proteins allergy are quite characteristic, including facial swelling (especially eyelid oedema) a laryngeal tightness. Allergic reactions to GRPs tend to be more severe, especially if co-factors are present (exercise, nonsteroid – antiinflammatory drugs or proton pump inhibitors therapy, alcohol, infection, menstruation and others). So far 9 allergenic gibberellin-regulated proteins have been identified from different plant sources pollen Cry j 7, Cup s 7, Jun a 7 and food Pru p 7, Pru m 7, Pun g 7, Cit s 7, Pru av 7, Cap a 7 and 2 non-allergenic applemaclein, snakin-1. Most probably primary sensitization occurs through inha- lation allergy to cypress pollen.
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
... Slabá) 8 -- 2.1 History 8 -- 2.1.1 Mendel\'s experiments with plant hybrids 8 -- 2.1.2 The rediscovery ... ... Uldrijan) -- 6.1 Epigenetic regulation of gene expression -- 6.1.1 DNA methylation -- 6.1.2 Histone modifications ... ... 8.4.2 Tumor inflammation -- 8.5 Hallmarks of cancer -- 8.5.1 Self-sufficiency in the production of growth ... ... signals -- 8.5.2 Insensitivity to cell cycle regulators -- 8.5.3 Unlimited replication potential -- ...
First edition 227 stran : ilustrace ; 30 cm
- Konspekt
- Lékařské vědy. Lékařství
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- biologie
- NLK Publikační typ
- učebnice vysokých škol
Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 μg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 μg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.
- MeSH
- antibióza * MeSH
- biologická ochrana farmakologie MeSH
- Burkholderiales genetika růst a vývoj metabolismus MeSH
- Cicer * mikrobiologie růst a vývoj MeSH
- endofyty izolace a purifikace genetika klasifikace fyziologie metabolismus MeSH
- fosfáty metabolismus MeSH
- Fusarium * růst a vývoj fyziologie genetika MeSH
- fylogeneze MeSH
- kořeny rostlin mikrobiologie MeSH
- kyseliny indoloctové metabolismus MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- regulátory růstu rostlin metabolismus MeSH
- RNA ribozomální 16S * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Alžírsko MeSH
The total aboveground biomass production, nutritional status, bearing and branching behaviors of the central leader and one year old shoots of young apple trees have been analyzed. The shoots were further characterized according to the length, shoot demography, and the production of terminal and lateral flowers. All the characteristics are described in connection with nitrogen supply and cultivar. Nitrogen represents one of the major macronutrients involved in the growth and development of the fruit trees. The understanding of the effect of nitrogen supply for flower bud formation can be further improved by detailed analyses of tree architecture. While the biomass production was cultivar specific, the trees within particular cultivar were characterized by almost similar growth with respect to the nitrogen supply. Cultivar ́Rubinola ́ exhibited similar branching pattern, but higher vigor than ́Topaz ́. As a result of higher apical dominance, ́Rubinola ́ produced higher proportion of long shoots, but a lower quality of short shoots than ́Topaz ́. Consequently, cultivar ́Rubinola ́ produced only few terminal flowers on short shoots and lateral flowers dominantly in the distal zone, while ́Topaz ́ was characterized by intensive terminal flowering, but the lateral flowers were more abundant in the median zone. Even a lower dose of spring nitrogen improved the flower bud formation on both terminal and lateral positions extending the flowering zone on one-year-old shoots. This further changed the branching and bearing behavior of the apple trees, which particularly allows to optimize their fertilization management. However, this effect appears to be further regulated by mechanism connected with apical dominance.
- MeSH
- dusík MeSH
- fertilizace MeSH
- květy MeSH
- listy rostlin MeSH
- Malus * MeSH
- stromy MeSH
- výhonky rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH