Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 μg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 μg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.
- MeSH
- antibióza * MeSH
- biologická ochrana farmakologie MeSH
- Burkholderiales genetika růst a vývoj metabolismus MeSH
- Cicer * mikrobiologie růst a vývoj MeSH
- endofyty izolace a purifikace genetika klasifikace fyziologie metabolismus MeSH
- fosfáty metabolismus MeSH
- Fusarium * růst a vývoj fyziologie genetika MeSH
- fylogeneze MeSH
- kořeny rostlin mikrobiologie MeSH
- kyseliny indoloctové metabolismus MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- regulátory růstu rostlin metabolismus MeSH
- RNA ribozomální 16S * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Alžírsko MeSH
In the present study, potentiality of endophytic microorganisms such as Rigidiporus vinctus AAU EF, Trichoderma reesei UH EF, and Sphingobacterium tabacisoli UH EB in the management of panama wilt and growth promotion of banana was assessed through artificial inoculation. During the study, a total of 220 bacterial and 110 fungal endophytes were isolated from root, pseudostem, and leaf samples of banana, and they were evaluated against Fusarium oxysporum f. sp cubense causing panama wilt. Out of total 330 bacterial and fungal endophytes, only five endophytes exhibited antagonism against Fusarium oxysporum f. sp cubense, out of which only three isolates, namely Trichoderma reesei UH EF, Rigidiporus vinctus AAU EF, and Sphingobacterium tabacisoli UH EB, produced indole acetic acid, siderophore, and hydrogen cyanide, except one bacterial strain Sphingobacterium tabacisoli UH EB which does not produce hydrogen cyanide. Furthermore, these three endophytes were identified through cultural and morphological characteristics as well as by the sequencing internal transcribed spacer (ITS) and 16S rRNA gene sequences analysis for bacteria, respectively. The response of host plant to endophyte inoculation was assessed by measuring the change in four growth parameters; plant height, pseudo stem girth (diameter), number of roots, and total number of leaves. The application of endophytes, irrespective of isolate and treatment type promoted the overall growth of the plant growth when compared with diseased plants with significant higher values recorded for all parameters assessed. The endophytes reported as growth promoters were found to have significant inhibition effect on Foc which can evidenced with lowest AUDPC values and epidemic rate at 99.09 units2 and 0.02 unit/day, respectively.
- MeSH
- banánovník * mikrobiologie MeSH
- endofyty * fyziologie MeSH
- Fusarium * fyziologie MeSH
- Hypocreales fyziologie MeSH
- mikrobiální interakce fyziologie MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- Polyporales fyziologie MeSH
- RNA ribozomální 16S genetika MeSH
- Sphingobacterium fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Studies of symbioses have traditionally focused on explaining one-to-one interactions between organisms. In reality, symbioses are often much more dynamic. They can involve many interacting members, and change depending on context. In studies of the ambrosia symbiosis-the mutualism between wood borer beetles and fungi-two variables have introduced uncertainty when explaining interactions: imprecise symbiont identification, and disregard for anatomical complexity of the insects. The black twig borer, Xylosandrus compactus Eichhoff, is a globally invasive ambrosia beetle that infests >200 plant species. Despite many studies on this beetle, reports of its primary symbionts are conflicting. We sampled adult X. compactus and infested plant material in central Florida to characterize the fungal symbiont community using dilution series, beetle partitioning, and DNA-based identification. X. compactus was consistently associated with two fungal taxa, Fusarium spp. and Ambrosiella xylebori Multivariate analyses revealed that A. xylebori was strongly associated with the beetle mycangium while Fusarium spp. were associated with the abdomen and external surfaces. The Fusarium spp. carried by X. compactus are not members of the Ambrosia Fusarium Clade, and are probably not mutualists. Fungal community composition of the mycangium was less variable than external body surfaces, thus providing a more consistent fungal inoculum. This is the first report of spatial partitioning as a mechanism for maintenance of a multimember ambrosia fungus community. Our results provide an explanation for discrepancies among previous reports, and suggest that conflicting results are not due to differences in symbiont communities, but due to inconsistent and incomplete sampling.
- MeSH
- Ascomycota genetika fyziologie MeSH
- DNA fungální genetika MeSH
- Fusarium genetika fyziologie MeSH
- houby genetika fyziologie MeSH
- nosatcovití mikrobiologie MeSH
- ribozomální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Florida MeSH
Ultra high performance liquid chromatography with quadrupole/time-of-flight mass spectrometry was applied to evaluate the potential of nontarget metabolomic fingerprinting in order to distinguish Fusarium-infected and control barley samples. First, the sample extraction and instrumental conditions were optimized to obtain the broadest possible representation of polar/medium-polar compounds occurring in extracts obtained from barley grain samples. Next, metabolomic fingerprints of extracts obtained from nine barley varieties were acquired under ESI conditions in both positive and negative mode. Each variety of barley was tested in two variants: artificially infected by Fusarium culmorum at the beginning of heading and a control group (no infection). In addition, the dynamics of barley infection development was monitored using this approach. The experimental data were statistically evaluated by principal component analysis, hierarchical clustering analysis, and orthogonal partial least-squares discriminant analysis. The differentiation of barley in response to F. culmorum infection was feasible using this metabolomics-based method. Analysis in positive mode provided a higher number of molecular features as compared to that performed under negative mode setting. However, the analysis in negative mode permitted the detection of deoxynivalenol and deoxynivalenol-3-glucoside considered as resistance-indicator metabolites in barley.
- MeSH
- analýza hlavních komponent MeSH
- Fusarium fyziologie MeSH
- hmotnostní spektrometrie MeSH
- ječmen (rod) metabolismus mikrobiologie MeSH
- metabolomika * MeSH
- metoda nejmenších čtverců MeSH
- nemoci rostlin mikrobiologie MeSH
- shluková analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effect of crop rotation and monocropping on the occurrence of bacteria with antagonistic activity toward Pythium debaryanum and Fusarium oxysporum was shown. Arthrobacter spp., fluorescent Pseudomonas spp. and actinomycetes were isolated from winter rape, sugar beet and winter barley rhizosphere and bulk soil from the plots of a long-term crop rotation experiment (18 years). The occurrence of mycoantagonistic isolates and their antibiosis level exhibited specificity for the site, crop and crop rotation. Mycoantagonistic activity was common among actinomycetes and fluorescent Pseudomonas spp. and less frequent among Arthrobacter spp. Antibiosis of fluorescent Pseudomonas spp. and Arthrobacter spp. was in general stronger against P. debaryanum than F. oxysporum. The highest percentage of antagonistic Pseudomonas spp. against P. debaryanum was in the plots of barley crop, while plots of winter rape showed higher frequency of antagonists against F. oxysporum. The highest antibiosis activity of Arthrobacter spp. against both pathogens occurred in isolates from barley and winter rape monoculture, and there were no F. oxysporum antagonists among these bacteria in sugar beet monoculture. Most of actinomycete isolates strongly inhibited growth of P. debaryanum and F. oxysporum. The percentage of mycoantagonistic actinomycetes and their antibiosis level were the highest in the 6-year crop rotation system.
Twenty-eight isolates of Trichoderma belonging to four different species were screened in vitro for their antagonistic ability against Fusarium oxysporum f.sp. dianthi causing carnation wilt. Three different levels of antagonism observed in dual plate assay were further confirmed by cell-free culture filtrate experiments. Isolates showing class I level of antagonism produced maximum lytic enzymes, chitinases and beta-1,3-glucanases. Genetic variability of 25 selected isolates was assessed by random amplified polymorphic DNA technique and the amplified products were correlated for their level of antagonism. Unweighed pair-group method with arithmetical averages cluster analysis revealed prominent inter-and intraspecific genetic variation among the isolates. Based on their genetic relationship, the isolates were mainly distributed into 3 major groups representing T. atroviride, T. pseudokoningii and T. harzianum, with 20-35% interspecific dissimilarity. However, the polymorphism shown by the isolates did not correlate to their level of antagonism.
- MeSH
- antibióza MeSH
- chitinasy genetika metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- Fusarium fyziologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- nemoci rostlin mikrobiologie MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- půdní mikrobiologie MeSH
- Trichoderma fyziologie genetika izolace a purifikace klasifikace MeSH
Differences in the effect of volatile and gaseous metabolites of germinating pea seeds on the germination of spores of Mucor racemosus and macroconidia of Fusarium oxysporum are described. Germination of spores of M. racemosus was inhibited by seed metabolites whereas germination of macroconidia of F. oxysporum was stimulated during the first two days and inhibition occurred only after further two days of germination of the seeds. A pronounced inhibition of germination of spores of both micromycetes took place due to absorption of CO2 from volatile and gaseous metabolites. Absorption of some components of seed metabolites in a KMnO4 solution led to a decrease of the inhibitory effect on germination of spores of M. racemosus and stimulatory effect on germination of macroconidia of F. oxysporum.
- MeSH
- absorpce MeSH
- chemická deprese MeSH
- Fabaceae metabolismus MeSH
- Fusarium fyziologie MeSH
- léčivé rostliny * MeSH
- Mucor fyziologie MeSH
- oxid uhličitý metabolismus farmakologie MeSH
- půdní mikrobiologie * MeSH
- semena rostlinná metabolismus MeSH
- spory hub fyziologie MeSH
- volatilizace MeSH
- Publikační typ
- časopisecké články MeSH