Axial and Radial Compression Behavior of Composite Rocket Launcher Developed by Robotized Filament Winding: Simulation and Experimental Validation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic, the European Union (European Structural and Investment Funds - Operational Program Research, Development and Education) in the frames of the project "Modular platform for autonomous chassis of
PubMed
33572252
PubMed Central
PMC7915840
DOI
10.3390/polym13040517
PII: polym13040517
Knihovny.cz E-zdroje
- Klíčová slova
- carbon fibers, filament winding, finite element analysis (FEA), glass fibers, mechanical properties,
- Publikační typ
- časopisecké články MeSH
The principal objective of the work is to compare among carbon-glass filament wound epoxy matrix hybrid composites with a different fiber ratio made by robotized winding processes and optimize the geometry suitable for the Rocket Propelled Grenade Launcher. ANSYS based finite element analysis was used to predict the axial as well as radial compression behavior. Experimental samples were developed by a robot-controlled filament winding process that was incorporated with continuous resin impregnation. The experimental samples were evaluated for the corresponding compressional properties. Filament wound tubular composite structures were developed by changing the sequence of stacking of hoop layers and helical layers, and also by changing the angle of wind of the helical layers while keeping the sequence constant. The samples were developed from carbon and glass filaments with different carbon proportions (0%, 25%, 50%, 75%, and 100%) and impregnated with epoxy resin. The compressional properties of the tubular composites that were prepared by filament winding were compared with the predicted axial and radial compressional properties from computational modelling using the finite element model. A very high correlation and relatively small prediction error was obtained.
Zobrazit více v PubMed
Minsch N., Herrmann F.H., Gereke T., Nocke A., Cherif C. Analysis of filament winding processes and potential equipment technologies. Procedia CIRP. 2017;66:125–130. doi: 10.1016/j.procir.2017.03.284. DOI
Harada S., Arai Y., Araki W., Iijima T., Kurosawa A., Ohbuchi T., Sasaki N.A. A simplified method for predicting burst pressure of type III filament-wound CFRP composite vessels considering the inhomogeneity of fiber packing. Compos. Struct. 2018;190:79–90. doi: 10.1016/j.compstruct.2018.02.011. DOI
Koussios S., Bergsma O.K., Beukers A. Filament winding. Part 1: Determination of the wound body related parameters. Compos. Part A Appl. Sci. Manuf. 2004;35:181–195. doi: 10.1016/j.compositesa.2003.10.003. DOI
Almeida J.H., Ribeiro M.L., Tita V., Amico S.C. Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches. Mater. Des. 2016;96:431–438. doi: 10.1016/j.matdes.2016.02.054. DOI
Martinec T., Mlýnek J., Petrů M. Calculation of the robot trajectory for the optimum directional orientation of fiber placement in the manufacture of composite profile frames. Robot. Comput. Integr. Manuf. 2015;35:42–54. doi: 10.1016/j.rcim.2015.02.004. DOI
Mlýnek J., Petru M., Martinec T., Koloor S.S.R. Fabrication of high-quality polymer composite frame by a new method of fiber winding process. Polymers. 2020;12:1037. doi: 10.3390/polym12051037. PubMed DOI PMC
Rojas E.V., Chapelle D., Perreux D., Delobelle B., Thiebaud F. Unified approach of filament winding applied to complex shape mandrels. Compos. Struct. 2014;116:805–813. doi: 10.1016/j.compstruct.2014.06.009. DOI
Humberto S.A., Maikson L.P., Ribeiro M.L., Tita V., Amico S.C. Buckling and post-buckling of filament wound composite tubes under axial compression: Linear, nonlinear, damage and experimental analyses. Compos. Part B Eng. 2018;149:227–239. doi: 10.1016/j.compositesb.2018.05.004. DOI
Jia X., Chen G., Yu Y., Li G., Zhu J., Luo X., Duan C., Yang X., Hui D. Effect of geometric factor, winding angle and pre-crack angle on quasi-static crushing behavior of filament wound CFRP cylinder. Compos. Part B Eng. 2013;45:1336–1343. doi: 10.1016/j.compositesb.2012.09.060. DOI
Quanjin M., Rejab M.R., Idris M.S., Bachtiar B., Siregar J.P., Harith M.N. Design and optimize of 3-axis filament winding machine. IOP Conf. Ser. Mater. Sci. Eng. 2017;257:20–24. doi: 10.1088/1757-899X/257/1/012039. DOI
Atiqah A., Maleque M.A., Jawaid M., Iqbal M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. Part B Eng. 2014;56:68–73. doi: 10.1016/j.compositesb.2013.08.019. DOI
Sahin O.S., Akdemir A., Avci A., Gemi L. Fatigue crack growth behavior of filament wound composite pipes in corrosive environment. J. Reinf. Plast. Compos. 2008;28:2957–2969. doi: 10.1177/0731684408094068. DOI
Thakur V.K., Thakur M.K., Gupta R.K. Hybrid Polymer Composite Materials Processing. Woodhead Publishing; London, UK: 2017.
Baker E., Voort M., Pope M. NATO standards and practice for munitions safety and Insensitive munitions; Proceedings of the XIIth International Armament Conference on Scientific Aspects of Armament and Safety Technology; Jachranka, Poland. 17–20 September 2018.
AASTP-5 . NATO Guidelines for the Storage, Maintenance and Transport of Ammunition on Deployed Mission or Operations. 1st ed. NATO; Brussels, Belgium: 2016. Version 3.
STANAG 4526 . Edition 2—Shaped Charge Jet, Munitions Test Procedure, NATO AC326. NATO; Brussels, Belgium: 2004.
Fuchs B., Baker E., Tomasello K., Becker M. Review and update of STANAG 4526 shaped charge jet, munitions test procedure; Proceedings of the International Explosives Safety Symposium & Exposition; San Diego, CA, USA. 6–9 August 2018.
Baker E.L., Pham J., Madsen T., Poulos W., Fuchs B.E. Shaped charge jet characterization and initiation test configuration for testing, The 12th hypervelocity impact symposium. Procedia. Eng. 2013;58:58–67. doi: 10.1016/j.proeng.2013.05.009. DOI
Baker E.L., Daniels A., Fisher S., Al-Shehaba N., Ng K.W., Fuchs B.E., Cruz F. Development of a small shaped charge insensitive munitions threat test, The 13th hypervelocity impact symposium. Procedia. Eng. 2015;103:27–34. doi: 10.1016/j.proeng.2015.04.005. DOI
Behera B.K., Mishra R.K. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Technol. 2007;19:259–276. doi: 10.1108/09556220710819483. DOI
Zu L. Stability of fiber trajectories for winding toroidal pressure vessels. Compos. Struct. 2012;94:1855–1860. doi: 10.1016/j.compstruct.2011.11.027. DOI
Behera B.K., Pattanayak A.K., Mishra R. Prediction of fabric drape behavior using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI
Venkataraman M., Mishra R., Jasikova D., Kotresh T.M. Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J. Ind. Text. 2015;45:387–404. doi: 10.1177/1528083714534711. DOI
Mishra R., Militky J., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Panchagnula K.K., Panchagnula J.S. Fabrication of hoop-wound glass fiber reinforced plastic cylindrical shells using filament winding machine. Mater. Today Proc. 2020;27:1315–1318. doi: 10.1016/j.matpr.2020.02.349. DOI
Venkataraman M., Mishra R., Militky J., Hes l. Aerogel based nanoporous fibrous materials for thermal insulation. Fibers Polym. 2014;15:1444–1449. doi: 10.1007/s12221-014-1444-9. DOI
Hwang T.K., Park J.B., Kim H.G. Evaluation of fiber material properties in filament-wound composite pressure vessels. Compos. Part A Appl. Sci. Manuf. 2012;43:1467–1475. doi: 10.1016/j.compositesa.2012.04.005. DOI
Crina B., Blaga M., Luminita V., Mishra R. Comfort properties of functional weft knitted spacer fabrics. Tekst Konfeksiyon. 2013;23:220–227.
Zu L., Zhu W., Dong H., Ke Y. Application of variable slippage coefficients to the design of filament wound toroidal pressure vessels. Compos. Struct. 2017;172:339–344. doi: 10.1016/j.compstruct.2017.03.094. DOI
Sorrentino L., Anamateros E., Bellini C., Carrino L., Corcione G., Leone A., Paris G. Robotic filament winding: An innovative technology to manufacture complex shape structural parts. Compos. Struct. 2019;220:699–707. doi: 10.1016/j.compstruct.2019.04.055. DOI
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Arumugam V., Mishra R., Militky J., Salacova J. Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Text. I. 2017;108:1095–1105. doi: 10.1080/00405000.2016.1220035. DOI
Tucker C.L., Liang E. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol. 1999;59:655–671. doi: 10.1016/S0266-3538(98)00120-1. DOI
Halpin Affdl J.C., Kardos J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976;16:344–352. doi: 10.1002/pen.760160512. DOI
Budarapu P.R., Zhuang X., Rabczuk T., Bordas S.P. Multiscale modeling of material failure: Theory and computational methods. Adv. Appl. Mech. 2019;52:1–103. doi: 10.1016/bs.aams.2019.04.002. DOI