Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FRGS-UTM-5F040
Ministry of Education Malaysia
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
33375598
PubMed Central
PMC7795143
DOI
10.3390/polym13010052
PII: polym13010052
Knihovny.cz E-zdroje
- Klíčová slova
- Hashin damage criteria, finite element simulation, out-of-plane behavior, polymer hexagonal honeycomb core, representative cell model,
- Publikační typ
- časopisecké články MeSH
The honeycomb (HC) core of sandwich structures undergoes flexural loading and carries the normal compression and shear. The mechanical properties and deformation response of the core need to be established for the design requirements. In this respect, this article describes the development of the smallest possible representative cell (RC) models for quantifying the deformation and failure process of the Nomex polymer-based hexagonal HC core structure under the out-of-plane quasi-static loadings. While the hexagonal single and multi-cell models are suitable for the tension and compression, a six-cell model is the simplest RC model developed for shear in the transverse and ribbon direction. Hashin's matrix and fiber damage equations are employed in simulating the failure process of the orthotropic cell walls, using the finite element (FE) analysis. The FE-calculated load-displacement curves are validated with the comparable measured responses throughout the loading to failure. The location of the fracture plane of the critical cell wall in the out-of-plane tension case is well predicted. The wrinkling of the cell walls, leading to the structural buckling of the HC core specimen in the compression test, compares well with the observed failure mechanisms. In addition, the observed localized buckling of the cell wall by the induced compressive stress during the out-of-plane shear in both the transverse and ribbon direction is explained. The mesoscale RC models of the polymer hexagonal HC core structure have adequately demonstrated the ability to predict the mechanics of deformation and the mechanisms of failure.
Zobrazit více v PubMed
Grediac M. A finite element study of the transverse shear in honeycomb cores. Int. J. Solids Struct. 1993;30:1777–1788. doi: 10.1016/0020-7683(93)90233-W. DOI
Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI
Ashab A., Ruan D., Lu G., Xu S., Wen C. Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. Mater. Des. 2015;74:138–149. doi: 10.1016/j.matdes.2015.03.004. DOI
Cote F., Deshpande V., Fleck N., Evans A. The out-of-plane compressive behavior of metallic honeycombs. Mater. Sci. Eng. A. 2004;380:272–280. doi: 10.1016/j.msea.2004.03.051. DOI
Nomoto K. Aramid Honeycombs and a Method for Producing the Same. No. 6,544,622. U.S. Patent. 2003 Apr 8;
Roy R., Park S.-J., Kweon J.-H., Choi J.-H. Characterization of Nomex honeycomb core constituent material mechanical properties. Compos. Struct. 2014;117:255–266. doi: 10.1016/j.compstruct.2014.06.033. DOI
Soltani A., Noroozi R., Bodaghi M., Zolfagharian A., Hedayati R. 3D printing on-water sports boards with bio-inspired core designs. Polymers. 2020;12:250. doi: 10.3390/polym12010250. PubMed DOI PMC
Zaharia S.M., Enescu L.A., Pop M.A. Mechanical Performances of lightweight sandwich structures produced by material extrusion-based additive manufacturing. Polymers. 2020;12:1740. doi: 10.3390/polym12081740. PubMed DOI PMC
Saad N.A., Sabah A. An investigation of new design of light weight structure of (ABS/PLA) by using of three dimensions printing; Proceedings of the 13th International Conference Standardization, Prototypes and Quality: A Means of Balkan Countries’ Collaboration; Brasov, Romania. 15–17 September 2016; pp. 3–4.
Lee H.S., Hong S.H., Lee J.R., Kim Y.K. Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J. Mater. Sci. 2002;37:1265–1272. doi: 10.1023/A:1014344228141. DOI
Aminanda Y., Castanié B., Barrau J.-J., Thevenet P. Experimental analysis and modeling of the crushing of honeycomb cores. Appl. Compos. Mater. 2005;12:213–227. doi: 10.1007/s10443-005-1125-3. DOI
Asprone D., Auricchio F., Menna C., Morganti S., Prota A., Reali A. Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos. Struct. 2013;105:240–255. doi: 10.1016/j.compstruct.2013.05.014. DOI
Foo C., Chai G., Seah L. A model to predict low-velocity impact response and damage in sandwich composites. Compos. Sci. Technol. 2008;68:1348–1356. doi: 10.1016/j.compscitech.2007.12.007. DOI
Akour S., Maaitah H. Finite element analysis of loading area effect on sandwich panel behaviour beyond the yield limit. In: Ebrahimi F., editor. Finite Element Analysis—New Trends and Developments. InTech; Rijeka, Croatia: 2012.
Heimbs S. Virtual testing of sandwich core structures using dynamic finite element simulations. Comput. Mater. Sci. 2009;45:205–216. doi: 10.1016/j.commatsci.2008.09.017. DOI
Aktay L., Johnson A.F., Kröplin B.-H. Numerical modelling of honeycomb core crush behaviour. Eng. Fract. Mech. 2008;75:2616–2630. doi: 10.1016/j.engfracmech.2007.03.008. DOI
Becker W. The in-plane stiffnesses of a honeycomb core including the thickness effect. Arch. Appl. Mech. 1998;68:334–341. doi: 10.1007/s004190050169. DOI
Giglio M., Manes A., Gilioli A. Investigations on sandwich core properties through an experimental–numerical approach. Compos. Part B Eng. 2012;43:361–374. doi: 10.1016/j.compositesb.2011.08.016. DOI
Castanié B., Bouvet C., Aminanda Y., Barrau J.-J., Thévenet P. Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins. Int. J. Impact Eng. 2008;35:620–634. doi: 10.1016/j.ijimpeng.2007.02.008. DOI
Roy R., Kweon J., Choi J. Meso-scale finite element modeling of NomexTM honeycomb cores. Adv. Compos. Mater. 2014;23:17–29. doi: 10.1080/09243046.2013.862382. DOI
Fischer S., Drechsler K., Kilchert S., Johnson A. Mechanical tests for foldcore base material properties. Compos. Part A Appl. Sci. Manuf. 2009;40:1941–1952. doi: 10.1016/j.compositesa.2009.03.005. DOI
Liu L., Meng P., Wang H., Guan Z. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall. Compos. Part B Eng. 2015;76:122–132. doi: 10.1016/j.compositesb.2015.02.017. DOI
Liu L., Wang H., Guan Z. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading. Compos. Struct. 2015;121:304–314. doi: 10.1016/j.compstruct.2014.11.034. DOI
Seemann R., Krause D. Numerical modelling of nomex honeycomb cores for detailed analyses of sandwich panel joints; Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI); Barcelona, Spain. 20–25 July 2014.
Pan S.-D., Wu L.-Z., Sun Y.-G., Zhou Z.-G., Qu J.-L. Longitudinal shear strength and failure process of honeycomb cores. Compos. Struct. 2006;72:42–46. doi: 10.1016/j.compstruct.2004.10.011. DOI
Gornet L., Marguet S., Marckmann G. Finite Element modeling of Nomex® honeycomb cores: Failure and effective elastic properties. Int. J. Comput. Mater. Contin. Tech. Sci. 2006;1:11–22.
Kaman M.O., Solmaz M.Y., Turan K. Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels. J. Compos. Mater. 2010;44:2819–2831. doi: 10.1177/0021998310371541. DOI
Malek S., Gibson L. Effective elastic properties of periodic hexagonal honeycombs. Mech. Mater. 2015;91:226–240. doi: 10.1016/j.mechmat.2015.07.008. DOI
Płatek P., Rajkowski K., Cieplak K., Sarzyński M., Małachowski J., Woźniak R., Janiszewski J. Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density. Polymers. 2020;12:2120. doi: 10.3390/polym12092120. PubMed DOI PMC
Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI
Li S., Sitnikova E., Liang Y., Kaddour A.-S. The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos. Part A Appl. Sci. Manuf. 2017;102:207–217. doi: 10.1016/j.compositesa.2017.08.007. DOI
Fuchs C., Bhattacharyya D., Fakirov S. Microfibril reinforced polymer–polymer composites: Application of Tsai-Hill equation to PP/PET composites. Compos. Sci. Technol. 2006;66:3161–3171. doi: 10.1016/j.compscitech.2005.02.023. DOI
Sun C., Tao J. Prediction of failure envelopes and stress/strain behaviour of composite laminates. Compos. Sci. Technol. 1998;58:1125–1136. doi: 10.1016/S0266-3538(97)00013-4. DOI
Jaafar M., Atlati S., Makich H., Nouari M., Moufki A., Julliere B. A 3D FE modeling of machining process of Nomex® honeycomb core: Influence of the cell structure behaviour and specific tool geometry. Procedia Cirp. 2017;58:505–510. doi: 10.1016/j.procir.2017.03.255. DOI
Yang G. Experimental investigation of strength criteria for S-glass, E-glass and graphite fiber composite plate. Theor. Appl. Fract. Mech. 1994;20:59–66. doi: 10.1016/0167-8442(94)90029-9. DOI
Koloor S., Khosravani M.R., Hamzah R., Tamin M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Giunta G., Catapano A., Belouettar S. Failure indentation analysis of composite sandwich plates via hierarchical models. J. Sandw. Struct. Mater. 2013;15:45–70. doi: 10.1177/1099636212460539. DOI
Lee S.M., Tsotsis T.K. Indentation failure behavior of honeycomb sandwich panels. Compos. Sci. Technol. 2000;60:1147–1159. doi: 10.1016/S0266-3538(00)00023-3. DOI
Rodríguez-Ramírez J.d.D., Castanié B., Bouvet C. Damage Mechanics Modelling of the shear nonlinear behavior of Nomex honeycomb core. Application to sandwich beams. Mech. Adv. Mater. Struct. 2020;27:80–89. doi: 10.1080/15376494.2018.1472351. DOI
Venkatesan K.R.R., Rai A., Stoumbos T.G., Inoyama D., Chattopadhyay A. Finite element based damage and failure analysis of honeycomb core sandwich composite structures for space applications; Proceedings of the AIAA Scitech 2020 Forum; Orlando, FL, USA. 6–10 January 2020; p. 0249.
Aborehab A., Kassem M., Nemnem A., Kamel M. Miscellaneous Modeling Approaches and Testing of a Satellite Honeycomb Sandwich Plate. J. Appl. Comput. Mech. 2019 doi: 10.22055/jacm.2019.31255.1846. DOI
Li Z., Ma J. Experimental Study on Mechanical Properties of the sandwich composite structure reinforced by basalt fiber and nomex honeycomb. Materials. 2020;13:1870. doi: 10.3390/ma13081870. PubMed DOI PMC
Hähnel F., Wolf K. Evaluation of the material properties of resin-impregnated Nomex paper as basis for the simulation of the impact behaviour of honeycomb sandwich; Proceedings of the 3rd International Conference on Composites Testing and Model Identification; Porto, Portugal. 10–12 April 2006; pp. 1–2.
Khan M.S., Koloor S.S.R., Tamin M.N. Effects of cell aspect ratio and relative density on deformation response and failure of honeycomb core structure. Mater. Res. Express. 2020;7:015332. doi: 10.1088/2053-1591/ab6926. DOI