Displacement Rate Effects on the Mode II Shear Delamination Behavior of Carbon Fiber/Epoxy Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34204033
PubMed Central
PMC8201169
DOI
10.3390/polym13111881
PII: polym13111881
Knihovny.cz E-zdroje
- Klíčová slova
- Mode II delamination, carbon/epoxy composite, cohesive zone model, displacement rate, fractography,
- Publikační typ
- časopisecké články MeSH
This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.
Faculty of Engineering and Science Curtin University Malaysia Miri 98009 Sarawak Malaysia
School of Engineering University of Southampton Highfield Southampton SO17 1BJ UK
Technical University of Liberec Studentska 2 461 17 Liberec Czech Republic
Zobrazit více v PubMed
Nash N., Ray D., Young T., Stanley W. The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer. Compos. Part A Appl. Sci. Manuf. 2015;76:135–144. doi: 10.1016/j.compositesa.2015.04.023. DOI
Koloor S.R., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Johar M., Israr H.A., Low K.O., Wong K.J. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates. J. Compos. Mater. 2017;51:3955–3968. doi: 10.1177/0021998317695414. DOI
Koloor S.S.R., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model. Polymer. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Shahdin A., Mezeix L., Bouvet C., Morlier J., Gourinat Y. Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams. Eng. Struct. 2009;31:2833–2841. doi: 10.1016/j.engstruct.2009.07.008. DOI
Rahman M.A.A.-S.B., Laia W.L., Saeedipourb H., Goha K.L. Cost-effective and efficient resin-injection device for repairing damaged composites. Reinf. Plast. 2019;63:156–160. doi: 10.1016/j.repl.2018.11.001. DOI
May M. Measuring the rate-dependent mode I fracture toughness of composites—A review. Compos. Part A Appl. Sci. Manuf. 2016;81:1–12. doi: 10.1016/j.compositesa.2015.10.033. DOI
Cantwell W.J., Blyton M. Influence of loading rate on the interlaminar fracture properties of high performance composites—A review. Appl. Mech. Rev. 1999;52:199–212. doi: 10.1115/1.3098934. DOI
Yasaee M., Mohamed G., Pellegrino A., Petrinic N., Hallett S.R. Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated composites. Int. J. Impact Eng. 2017;107:1–11. doi: 10.1016/j.ijimpeng.2017.05.003. DOI
Marzi S., Rauh A., Hinterhölzl R.M. Fracture mechanical investigations and cohesive zone failure modelling on automotive com-posites. Compos. Struct. 2014;111:324–331. doi: 10.1016/j.compstruct.2014.01.016. DOI
Cantwell W. The Influence of Loading Rate on the Mode II Interlaminar Fracture Toughness of Composite Materials. J. Compos. Mater. 1997;31:1364–1380. doi: 10.1177/002199839703101401. DOI
Kusaka T., Kurokawa T., Hojo M., Ochiai S. Evaluation of Mode II Interlaminar Fracture Toughness of Composite Laminates under Impact Loading. Key Eng. Mater. 1997;141–143:477–500. doi: 10.4028/www.scientific.net/KEM.141-143.477. DOI
Machado J., Marques E., Campilho R., da Silva L.F. Mode II fracture toughness of CFRP as a function of temperature and strain rate. Compos. Part B Eng. 2017;114:311–318. doi: 10.1016/j.compositesb.2017.02.013. DOI
Zabala H., Aretxabaleta L., Castillo G., Aurrekoetxea J. Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirec-tional carbon fibre epoxy composites. Polym. Test. 2016;55:212–218. doi: 10.1016/j.polymertesting.2016.09.001. DOI
Blackman B.R.K., Dear J.P., Kinloch A., MacGillivray H., Wang Y., Williams J.G., Yayla P. The failure of fibre composites and adhesively bonded fibre composites under high rates of test. J. Mater. Sci. 1996;31:4467–4477. doi: 10.1007/BF00366342. DOI
De Verdiere M.C., Skordos A., Walton A., May M. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/Mode II. Eng. Fract. Mech. 2012;96:1–10. doi: 10.1016/j.engfracmech.2011.12.011. DOI
ASTM D7905 . Standard Test. Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2014.
Ng T.P., Koloor S., Djuansjah J., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Rahimian Koloor S.S., Karimzadeh A., Tamin M.N., Abd Shukor M.H. Effects of sample and indenter configurations of nanoindentation experiment on the mechanical behavior and properties of ductile materials. Metals. 2018;8:421. doi: 10.3390/met8060421. DOI
Koloor S., Abdullah M., Tamin M., Ayatollahi M. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI
Koloor S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462–463:726–731.
Low K., Teng S., Johar M., Israr H., Wong K. Mode I delamination behaviour of carbon/epoxy composite at different displacement rates. Compos. Part B: Eng. 2019;176:107293. doi: 10.1016/j.compositesb.2019.107293. DOI
Irwin G.R., Kies J.A. Critical energy rate analysis of fracture strength. Weld. J. Res. Suppl. 1954;33:193–198.
Machado J.J.M., Marques E.A.S., Campilho R., da Silva L.F.M. Mode I fracture toughness of CFRP as a function of temperature and strain rate. J. Compos. Mater. 2016;51:3315–3326. doi: 10.1177/0021998316682309. DOI
Compston P., Jar P.-Y., Davies P. Matrix effect on the static and dynamic interlaminar fracture toughness of glass-fibre marine composites. Compos. Part B: Eng. 1998;29:505–516. doi: 10.1016/S1359-8368(98)00004-3. DOI
Compston P., Jar P.-Y., Burchill P., Takahashi K. The effect of matrix toughness and loading rate on the mode-II interlaminar fracture toughness of glass-fibre/vinyl-ester composites. Compos. Sci. Technol. 2001;61:321–333. doi: 10.1016/S0266-3538(00)00226-8. DOI
Davidson B., Kumar M., Soffa M. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos. Part A: Appl. Sci. Manuf. 2009;40:67–79. doi: 10.1016/j.compositesa.2008.10.006. DOI
Maikuma H., Gillespie J.W., Jr., Wilkins D.J. Mode II Interlaminar Fracture of the Center Notch Flexural Specimen under Impact Loading. J. Compos. Mater. 1990;24:124–149. doi: 10.1177/002199839002400201. DOI
Smiley A., Pipes R. Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials. Compos. Sci. Technol. 1987;29:1–15. doi: 10.1016/0266-3538(87)90033-9. DOI
Zhao Y., Liu W., Seah L.K., Chai G.B. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Compos. Part B: Eng. 2016;106:332–343. doi: 10.1016/j.compositesb.2016.09.045. DOI
Nash N.H., Young T.M., Stanley W.F. The influence of a thermoplastic toughening interlayer and hydrothermal conditioning on the Mode-II interlaminar fracture toughness of Carbon/Benzoxazine composites. Compos. Part A Appl. Sci. Manuf. 2016;81:111–120. doi: 10.1016/j.compositesa.2015.11.010. DOI
Purslow D. Matrix fractography of fibre-reinforced epoxy composites. Composites. 1986;17:289–303. doi: 10.1016/0010-4361(86)90746-9. DOI
Berger L., Cantwell W.J. Temperature and loading rate effects in the mode II interlaminar fracture behavior of carbon fiber rein-forced PEEK. Polym. Compos. 2001;22:271–281. doi: 10.1002/pc.10537. DOI
Camanho P., Davila C.G., De Moura M.F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003;37:1415–1438. doi: 10.1177/0021998303034505. DOI
Sørensen B.F., Goutianos S., Jacobsen T.K. Strength scaling of adhesive joints in polymer–matrix composites. Int. J. Solids Struct. 2009;46:741–761. doi: 10.1016/j.ijsolstr.2008.09.024. DOI
Mollón V., Bonhomme J., Elmarakbi A., Argüelles A., Vina-Olay J.A. Finite element modelling of mode I delamination specimens by means of implicit and explicit solvers. Polym. Test. 2012;31:404–410. doi: 10.1016/j.polymertesting.2011.12.008. DOI
Turon A., Dávila C., Camanho P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007;74:1665–1682. doi: 10.1016/j.engfracmech.2006.08.025. DOI
Harper P.W., Hallett S.R. Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 2008;75:4774–4792. doi: 10.1016/j.engfracmech.2008.06.004. DOI
Harper P.W., Sun L., Hallett S.R. A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour. Compos. Part A: Appl. Sci. Manuf. 2012;43:722–734. doi: 10.1016/j.compositesa.2011.12.016. DOI
Soto A., González E., Maimí P., Turon A., De Aja J.S., De La Escalera F. Cohesive zone length of orthotropic materials undergoing delamination. Eng. Fract. Mech. 2016;159:174–188. doi: 10.1016/j.engfracmech.2016.03.033. DOI
Hull D., Clyne T.W. An Introduction to Composite Materials. 2nd ed. Cambridge University Press; Cambridge, UK: 1996.
Zhao L., Gong Y., Zhang J., Chen Y., Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohe-sive elements. Compos. Struct. 2014;116:509–522. doi: 10.1016/j.compstruct.2014.05.042. DOI
Turon A., Camanho P.P., Costa J., Renart J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of inter-laminar strengths and elastic stiffness. Compos. Struct. 2010;92:1857–1864. doi: 10.1016/j.compstruct.2010.01.012. DOI
Sorensen L., Botsis J., Gmür T., Humbert L. Bridging tractions in mode I delamination: Measurements and simulations. Compos. Sci. Technol. 2008;68:2350–2358. doi: 10.1016/j.compscitech.2007.08.024. DOI
Johar M., Wong K.J., Tamin M.N. Mixed-mode delamination failures of quasi-isotropic quasi-homogeneous carbon/epoxy laminated composite. In: Ali A., editor. Failure Analysis and Prevention. InTech; Rijeka, Croatia: pp. 33–45. DOI
Johar M., Chong W., Kang H., Wong K. Effects of moisture absorption on the different modes of carbon/epoxy composites delamination. Polym. Degrad. Stab. 2019;165:117–125. doi: 10.1016/j.polymdegradstab.2019.05.007. DOI
Jagannathan N., Chandra A.R.A., Manjunatha C.M. Onset-of-growth behavior of mode II delamination in a carbon fiber compo-site under spectrum fatigue loads. Compos. Struct. 2015;132:477–483. doi: 10.1016/j.compstruct.2015.05.052. DOI
Persson B.N.J. A simple model for viscoelastic crack propagation. Eur. Phys. J. E. 2021;44:1–10. doi: 10.1140/epje/s10189-020-00001-w. PubMed DOI PMC
Manikkavel A., Kumar V., Lee D.-J. Simple fracture model for an electrode and interfacial crack in a dielectric elastomer under tensile loading. Theor. Appl. Fract. Mech. 2020;108:102626. doi: 10.1016/j.tafmec.2020.102626. DOI