In situ reverse transcription: the magic of strength and anonymity
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20627869
PubMed Central
PMC2938209
DOI
10.1093/nar/gkq619
PII: gkq619
Knihovny.cz E-zdroje
- MeSH
- akrylové pryskyřice MeSH
- fluorescenční mikroskopie MeSH
- HeLa buňky MeSH
- hybridizace in situ fluorescenční metody MeSH
- lidé MeSH
- messenger RNA analýza chemie MeSH
- permeabilita buněčné membrány MeSH
- poly A analýza MeSH
- reverzní transkripce * MeSH
- zalévání tkání MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- messenger RNA MeSH
- poly A MeSH
In this study, we describe an approach that enables a highly specific, effective and fast detection of polyadenylated RNA sequences in situ at the light and electron microscopy levels. The method developed is based on the incorporation of 5-bromo-2'-deoxyuridine into the growing cDNA strand by means of the reverse transcriptase. We have shown that unlike the previously used deoxyuridine tagged with biotin or digoxigenin, 5-bromo-2'-deoxyuridine is 'invisible' in the DNA-DNA duplex but easily detectable in the DNA-RNA duplex. This feature is an important pre-requisite for the correct interpretation of the data obtained, as our results strongly indicate that reverse transcriptase uses DNA breaks as primers efficiently. We have also shown that the replacement of deoxythymidine by 5-bromo-2'-deoxyuridine considerably stabilizes the growing DNA-RNA duplex, thus enabling the one-step detection of polyadenylated RNA in structurally well-preserved cells. The method developed provides a highly specific signal with the signal/noise ratio higher than 130 for permeabilized cells and 25 for conventional acrylic resin sections under the conditions used. When the high pressure freezing technique followed by the freeze substitution is employed for the cell's preparation, the ratio is higher than 80.
Zobrazit více v PubMed
Eberwine J, Spencer C, Miyashiro K, Mackler S, Finnell R. Complementary DNA synthesis in situ: methods and applications. Methods Enzymol. 1992;216:80–100. PubMed
Longley J, Merchant MA, Kacinski BM. In situ transcription and detection of CD1a mRNA in epidermal cells: an alternative to standard in situ hybridization techniques. J. Invest. Dermatol. 1989;93:432–435. PubMed
Mocharla H, Mocharla R, Hodes ME. Alpha-amylase gene transcription in tissues of normal dog. Nucleic Acids Res. 1990;18:1031–1036. PubMed PMC
Tecott LH, Barchas JD, Eberwine JH. In situ transcription: specific synthesis of complementary DNA in fixed tissue sections. Science. 1988;240:1661–1664. PubMed
Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA. 1990;87:1663–1667. PubMed PMC
Bassell GJ, Powers CM, Taneja KL, Singer RH. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J. Cell Biol. 1994;126:863–876. PubMed PMC
Mogensen J, Kolvraa S, Hindkjaer J, Petersen S, Koch J, Nygard M, Jensen T, Gregersen N, Junker S, Bolund L. Nonradioactive, sequence-specific detection of RNA in situ by primed in situ labeling (PRINS) Exp. Cell Res. 1991;196:92–98. PubMed
Politz JC, Singer RH. In situ reverse transcription for detection of hybridization between oligonucleotides and their intracellular targets. Methods. 1999;18:281–285. PubMed
Politz JC, Taneja KL, Singer RH. Characterization of hybridization between synthetic oligodeoxynucleotides and RNA in living cells. Nucleic Acids Res. 1995;23:4946–4953. PubMed PMC
Koberna K, Stanek D, Malinsky J, Eltsov M, Pliss A, Ctrnacta V, Cermanova S, Raska I. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999;108:325–335. PubMed
Carter KC, Taneja KL, Lawrence JB. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J. Cell Biol. 1991;115:1191–1202. PubMed PMC
Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E. Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp. Cell Res. 1993;208:19–34. PubMed
Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002;115:4037–4051. PubMed
Fu XD, Maniatis T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature. 1990;343:437–441. PubMed
Cullen BR, Bick MD. Thermal denaturation of DNA from bromodeoxyuridine substituted cells. Nucleic Acids Res. 1976;3:49–62. PubMed PMC
David J, Gordon JS, Rutter WJ. Increased thermal stability of chromatin containing 5-bromodeoxyuridine-substituted DNA. Proc. Natl Acad. Sci. USA. 1974;71:2808–2812. PubMed PMC
Timofeev E, Mirzabekov A. Binding specificity and stability of duplexes formed by modified oligonucleotides with a 4096-hexanucleotide microarray. Nucleic Acids Res. 2001;29:2626–2634. PubMed PMC