The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview

. 2020 ; 11 () : 552969. [epub] 20210106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33488637

In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.

Zobrazit více v PubMed

Allen J. F. (2009). Why chloroplasts and mitochondria retain their own genomes and genetic systems: collocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. U. S. A. 112, 10231–10238. 10.1073/pnas.1500012112, PMID: PubMed DOI PMC

Almagro L., Gómez Ros L. V., Belchi-Navarro S., Bru R., Ros Barceló A., Pedreño M. A. (2008). Class III peroxidases in plant defence reactions. J. Exp. Bot. 60, 377–390. 10.1093/jxb/ern277, PMID: PubMed DOI

Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. 10.1146/annurev.arplant.55.031903.141701, PMID: PubMed DOI

Arora A., Sairam R. K., Srivastava G. C. (2002). Oxidative stress and antioxidative system in plants. Curr. Sci. 82, 1227–1238.

Asada K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Plant Biol. Ann. Rev. 50, 601–639. 10.1146/annurev.arplant.50.1.601, PMID: PubMed DOI

Baby J., Jini D. (2010). Insight into the role of antioxidant enzymes for salt tolerance in plants. Int. J. Bot. 6, 456–464. 10.3923/ijb.2010.456.464 DOI

Badawi G. H., Kawano N., Yamauchi Y., Shimada E., Sasaki R., Kubo A., et al. . (2004). Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances tolerance to salt stress and water deficit. Physiol. Plant. 121, 231–238. 10.1111/j.0031-9317.2004.00308.x, PMID: PubMed DOI

Bannister J. V., Bannister W. H., Rotilio G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. Crit. Rev. Biochem. 22, 111–180. 10.3109/10409238709083738, PMID: PubMed DOI

Bartoli C. G., Buet A., Grozeff G. G., Galatro A., Simontacchi M. (2017). “Ascorbate-glutathione cycle and abiotic stress tolerance in plants” in Ascorbic acid in plant growth, development and stress tolerance. eds. Hossain M. A., Munné-Bosch S., Burritt D. J., Diaz-Vivancos P., Fujita M., Lorence A. (Switzerland: Springer; ), 177–200.

Bhattacharjee S. (2005). Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr. Sci. 89, 1113–1121.

Birben E., Sahiner U. M., Sackesen C., Erzurum S., Kalayci O. (2012). Oxidative stress and antioxidant defence. World Allergy Organ. J. 5, 9–19. 10.1097/WOX.0b013e3182439613, PMID: PubMed DOI PMC

Blokhina O., Virolainen E., Fagerstedt K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194. 10.1093/aob/mcf118, PMID: PubMed DOI PMC

Bowler C., Montagu M. V., Inzé D. (1992). Superoxide dismutase and stress tolerance. Plant Biol. Ann. Rev. 43, 83–116. 10.1146/annurev.pp.43.060192.000503 DOI

Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. (2018). Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Int. J. Mol. Sci. 19:E2812. 10.3390/ijms19092812, PMID: PubMed DOI PMC

Cheeseman J. M. (2006). Hydrogen peroxide concentrations and leaves under natural conditions. J. Exp. Bot. 57, 2435–2444. 10.1093/jxb/erl004, PMID: PubMed DOI

Chen G. X., Asada K. (1987). Ascorbate peroxidase in tea leaves: occurrence of two isozymes and differences in their enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998. 10.1093/oxfordjournals.pcp.a077844 DOI

Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53. 10.3389/fenvs.2014.00053 DOI

Davey M. W., Montagu M. V., Inze D., Sanmartin M., Kanellis A., Smirnoff N., et al. (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860. 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6 DOI

Davletova S., Rizhsky L., Liang H., Shengqiang Z., Oliver D. J., Coutu J., et al. . (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268–281. 10.1105/tpc.104.026971, PMID: PubMed DOI PMC

De Leonardis S., Dipierro N., Dipierro S. (2000). Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol. Biochem. 38, 773–779. 10.1016/S0981-9428(00)01188-8 DOI

Diaz Vivancos P., Dong Y., Ziegler K., Markovic J., Pallardó F. V., Pellny T. K., et al. . (2010a). Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield: recruitment of GSH into the nucleus. Plant J. 64, 825–838. 10.1111/j.1365-313X.2010.04371.x, PMID: PubMed DOI

Diaz Vivancos P., Wolff T., Markovic J., Pallardó F. V., Foyer C. H. (2010b). A nuclear glutathione cycle within the cell cycle. Biochem. J. 431, 169–178. 10.1042/BJ20100409, PMID: PubMed DOI

Diebold L., Chandel N. S. (2016). Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med. 100, 86–93. 10.1016/j.freeradbiomed.2016.04.198, PMID: PubMed DOI

Dietz K. J. (2011). Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 15, 1129–1159. 10.1089/ars.2010.3657, PMID: PubMed DOI PMC

Dumont S., Rivoal J. (2019). Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front. Plant Sci. 10:166. 10.3389/fpls.2019.00166, PMID: PubMed DOI PMC

Elstner E. F. (1982). Oxygen activation and oxygen toxicity. Annu. Rev. Plant Biol. 33, 73–96. 10.1146/annurev.pp.33.060182.000445 DOI

Exposito-Rodriguez M., Laissue P. P., Yvon-Durocher G., Smirnoff N., Mullineaux P. M. (2017). Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 8:49. 10.1038/s41467-017-00074-w, PMID: PubMed DOI PMC

Fenton H. J. H. (1984). Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. Trans. 65, 899–910. 10.1039/ct8946500899 DOI

Foyer C. H., Halliwell B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21–25. 10.1007/BF00386001, PMID: PubMed DOI

Foyer C. H., Lelandais M. (1996). A comparison of the relative rates of ascorbate and glucose transport across the thylakoid, chloroplast, and plasmalemma membranes of pea leaf mesophyll cells. J. Plant Physiol. 148, 391–398. 10.1016/S0176-1617(96)80271-9 DOI

Foyer C. H., Noctor G. (2016). Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ. 39, 951–964. 10.1111/pce.12621, PMID: PubMed DOI

Foyer C. H., Shigeoka S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155, 93–100. 10.1104/pp.110.166181, PMID: PubMed DOI PMC

Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. 10.1016/j.plaphy.2010.08.016, PMID: PubMed DOI

Gupta R., Chakrabarty S. K. (2013). Gibberellic acid in plant: still a mystery unresolved. Plant Signal. Behav. 8:e25504. 10.4161/psb.25504, PMID: PubMed DOI PMC

Halliwell B., Gutteridge J. M. (2015). Free radicals in biology and medicine. New York: Oxford University Press.

Han Y., Mhamdi A., Chaouch S., Noctor G. (2013). Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 36, 1135–1146. 10.1111/pce.12048, PMID: PubMed DOI

Herbette S., Lenne C., Leblanc N., Julien J. L., Drevet J. R., Roeckel-Drevet P. (2002). Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur. J. Biochem. 269, 2414–2420. 10.1046/j.1432-1033.2002.02905.x, PMID: PubMed DOI

Huang H., Ullah F., Zhou D. -X., Yi M., Zhao Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10:800. 10.3389/fpls.2019.00800, PMID: PubMed DOI PMC

Ishibashi Y., Tawaratsumida T., Kondo K., Kasa S., Sakamoto M., Aoki N., et al. . (2012). Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol. 158, 1705–1714. 10.1104/pp.111.192740, PMID: PubMed DOI PMC

Ishikawa T., Shigeoka S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 72, 1143–1154. 10.1271/bbb.80062, PMID: PubMed DOI

Jia L., Xu W., Li W., Ye N., Liu R., Shi L., et al. . (2013). Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. Ann. Bot. 111, 839–847. 10.1093/aob/mct045, PMID: PubMed DOI PMC

Jimenez A., Hernandez J. A., del Río L. A., Sevilla F. (1997). Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114, 275–284. 10.1104/pp.114.1.275, PMID: PubMed DOI PMC

Jones M., Smirnoff N. (2005). “Reactive oxygen species in plant development and pathogen defence” in Antioxidants and reactive oxygen species in plants. ed. Smirnoff N. (United Kingdom: Wiley Bleckwell; ), 197–214.

Kehrer J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149, 43–50. 10.1016/s0300-483x(00)00231-6, PMID: PubMed DOI

Kohen R., Nyska A. (2002). Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30, 620–650. 10.1080/01926230290166724, PMID: PubMed DOI

Krasnovsky J. A. (1998). Singlet molecular oxygen in photo biochemical systems: IR phosphorescence studies. Memb. Cell Biol. 12, 665–690. PMID: PubMed

Krieger-Liszkay A. (2005). Singlet oxygen production in photosynthesis. J. Exp. Bot. 56, 337–346. 10.1093/jxb/erh237, PMID: PubMed DOI

Larson R. A. (1988). The antioxidants of higher plants. Phytochemistry 27, 969–978.

Lewis N. G., Yamamoto E. (1990). Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 41, 455–496. 10.1146/annurev.pp.41.060190.002323 PubMed DOI

Liu L., Li J. (2019). Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants. Front. Plant Sci. 10:749. 10.3389/fpls.2019.00749, PMID: PubMed DOI PMC

Lushchak V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224, 164–175. 10.1016/j.cbi.2014.10.016, PMID: PubMed DOI

Malik S. I., Hussain A., Yun B. W., Spoel S. H., Loake G. J. (2011). GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci. 181, 540–544. 10.1016/j.plantsci.2011.04.004, PMID: PubMed DOI

Mehler H., Brown H. (1956). Studies on reactions of illuminated chloroplasts III. Simultaneous photoproduction and consumption of oxygen studied with oxygen isotopes. Arch. Biochem. Biophys. 38, 365–370. 10.1016/0003-9861(52)90042-8, PMID: PubMed DOI

Mhamdi A., Hager J., Chaouch S., Queval G., Han Y., Taconnat Y., et al. . (2010). Arabidopsis glutathione Reductase 1 is essential for the metabolism of intracellular H2O2 and to enable appropriate gene expression through both salicylic acid and jasmonic acid signalling pathways. Plant Physiol. 153, 1144–1160. 10.1104/pp.110.153767, PMID: PubMed DOI PMC

Mhamdi A., Noctor G., Baker A. (2012). Plant catalases: peroxisomal redox guardians. Arch. Biochem. Biophys. 525, 181–194. 10.1016/j.abb.2012.04.015, PMID: PubMed DOI

Mittler R. (2017). ROS are good. Trends Plant Sci. 22, 11–19. 10.1016/j.tplants.2016.08.002, PMID: PubMed DOI

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498. 10.1016/j.tplants.2004.08.009, PMID: PubMed DOI

Miyake C., Asada K. (1996). Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol. 37, 423–430. 10.1093/oxfordjournals.pcp.a028963 DOI

Morales M., Munné-Bosch S. (2016). Oxidative stress: a master regulator of plant trade-offs? Trends Plant Sci. 21, 996–999. 10.1016/j.tplants.2016.09.002, PMID: PubMed DOI

Moural T. W., Lewis K. M., Barnaba C., Zhu F., Palmer N. A., Sarath G., et al. . (2017). Characterization of class III peroxidases from switchgrass. Plant Physiol. 173, 417–433. 10.1104/pp.16.01426, PMID: PubMed DOI PMC

Nimse S. B., Pal D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5, 27986–28006. 10.1039/C4RA13315C DOI

Noctor G., Foyer C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Plant Biol. Ann. Rev. 49, 249–279. 10.1146/annurev.arplant.49.1.249, PMID: PubMed DOI

Noctor G., Foyer C. H. (2016). Intracellular redox compartmentation and ROS-related communication in regulation and signalling. Plant Physiol. 171, 1581–1592. 10.1104/pp.16.00346, PMID: PubMed DOI PMC

Noctor G., Reichheld J. P., Foyer C. H. (2018). ROS-related redox regulation and signalling in plants. Semin. Cell Dev. Biol. 80, 3–12. 10.1016/j.semcdb.2017.07.013, PMID: PubMed DOI

Pandey V. P., Awasthi M., Singh S., Tiwari S., Dwivedi U. N. (2017). A comprehensive review on the function and application of plant peroxidases. Biochem. Anal. Biochem. 6:308. 10.4172/2161-1009.1000308 DOI

Pulido P., Cazalis R., Cejudo F. J. (2009). An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Plant J. 57, 132–145. 10.1111/j.1365-313X.2008.03675.x, PMID: PubMed DOI

Queval G., Jaillard D., Zechmann B., Noctor G. (2011). Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ. 34, 21–32. 10.1111/j.1365-3040.2010.02222.x, PMID: PubMed DOI

Reczek C. R., Chandel N. S. (2015). ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33, 8–13. 10.1016/j.ceb.2014.09.010, PMID: PubMed DOI PMC

Rhoads D. M., Umbach A. L., Subbaiah C. C., Siedow J. N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141, 357–366. 10.1104/pp.106.079129, PMID: PubMed DOI PMC

Rice-Evans C. A., Miller N. J., Paganga G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956. 10.1016/0891-5849(95)02227-9, PMID: PubMed DOI

Rizhsky L., Liang H., Mittler R. (2003). The water-water cycle is essential for chloroplast protection in the absence of stress. J. Biol. Chem. 278, 38921–38925. 10.1074/jbc.M304987200, PMID: PubMed DOI

Sakakibara H., Honda Y., Nakagawa S., Ashida H., Kanazawa K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 51, 571–581. 10.1021/jf020926l, PMID: PubMed DOI

Sakihama Y., Mano J. I., Sano S., Asada K., Yamasaki H. (2000). Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem. Biophys. Res. Commun. 279, 949–954. 10.1006/bbrc.2000.4053, PMID: PubMed DOI

Salehi B., Azzini E., Zucca P., Maria Varoni E. V., Anil Kumar N., Dini L., et al. (2020). Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl. Sci. 10:947. 10.3390/app10030947 DOI

Scheibe R., Backhausen J. E., Emmerlich V., Holtgrefe S. (2005). Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J. Exp. Bot. 56, 1481–1489. 10.1093/jxb/eri181, PMID: PubMed DOI

Schieber M., Chandel N. S. (2014). ROS function in redox signalling and oxidative stress. Curr. Biol. 24, R453–R462. 10.1016/j.cub.2014.03.034, PMID: PubMed DOI PMC

Sharma P., Jha A. B., Dubey R. S., Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidant defence mechanism in plants under stressful conditions. J. Bot. 2012:217037. 10.1155/2012/217037 DOI

Sies H. (2018). On the history of oxidative stress: concept and some aspects of current development. Curr. Opin. Toxicol. 7, 122–126. 10.1016/j.cotox.2018.01.002 DOI

Sies H., Berndt C., Jones D. P. (2017). Oxidative stress. Ann. Rev. Boichem. 86, 715–748. 10.1146/annurev-biochem-061516-045037, PMID: PubMed DOI

Sies H., Cadenas E. (1985). Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 311, 617–631. 10.1098/rstb.1985.0168, PMID: PubMed DOI

Smirnoff N. (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3, 229–235. PMID: PubMed

Suzuki N., Miller G., Morales J., Shulaev V., Torres M. A., Mittler R. (2011). Respiratory burst oxidases: the engines of ROS signalling. Curr. Opin. Plant Biol. 14, 691–699. 10.1016/j.pbi.2011.07.014, PMID: PubMed DOI

Swanson S., Gilroy S. (2010). ROS and plant development. Physiol. Plant. 138, 384–392. 10.1111/j.1399-3054.2009.01313.x, PMID: PubMed DOI

Takahama U. (2004). Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: the physiological significance of the oxidation reactions. Phytochem. Rev. 3, 207–219. 10.1023/B:PHYT.0000047805.08470.e3 DOI

Takahama U., Oniki T. (1992). Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol. 33, 379–387. 10.1093/oxfordjournals.pcp.a078265 DOI

Talaat N. B., Hasanuzzaman M., Fotopoulos V., Nahar K., Fujita M. (2019). “Role of reactive oxygen species signalling in plant growth and development” in Reactive oxygen, nitrogen and sulfur species in plants. eds. Hasanuzzaman H., Fotopoulos V., Nahar K., Fujita M. (United Kingdom: Wiley Blackwell; ), 225–266.

Trebst A. (2003). Function of β-carotene and tocopherol in photosystem II. Z. Naturforsch C. J. Biosci. 58, 609–620. 10.1515/znc-2003-9-1001, PMID: PubMed DOI

Triantaphylidès C., Havaux M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14, 219–228. 10.1016/j.tplants.2009.01.008, PMID: PubMed DOI

Truong T. H., Carroll K. S. (2013). Redox regulation of protein kinases. Crit. Rev. Biochem. Mol. Biol. 48, 332–356. 10.3109/10409238.2013.790873, PMID: PubMed DOI PMC

Veljović-Jovanović S., Kukavica B., Vidović M., Morina F., Menckhoff L. J. (2018). “Class III peroxidases: functions, localization and redox regulation of isoenzymes” in Antioxidants and antioxidant enzymes in higher plants. eds. Gupta D. K., Palma J. M., Corpas F. J. (Switzerland: Springer Nature; ), 269–300.

Wachter A., Wolf S., Steiniger H., Bogs J., Rausch T. (2005). Differential targeting of GSH1 and GSH2 are achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 41, 15–30. 10.1111/j.1365-313X.2004.02269.x, PMID: PubMed DOI

Welinder K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388–393. 10.1016/0959-440X(92)90230-5 DOI

Xiulan X., Zhouqing H., Nifan C., Zizhong T., Qiang W., Yi C. (2019). The roles of environmental factors in the regulation of oxidative stress in the plant. Biomed. Res. Int. 2019:9732325. 10.1155/2019/9732325, PMID: PubMed DOI PMC

Yabuta Y., Motoki T., Yoshimura K., Takeda T., Ishikawa T., Shigeoka S. (2002). Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidant systems under photo-oxidative stress. Plant J. 32, 915–925. 10.1046/j.1365-313x.2002.01476.x, PMID: PubMed DOI

Yachandra V., Sauer K., Klein M. (1996). Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem. Rev. 96, 2927–2950. 10.1021/cr950052k, PMID: PubMed DOI

Zlobin I. E., Kartashov A. V., Shpakovski G. V. (2017). Different roles of glutathione in copper and zinc chelation in Brassica napus roots. Plant Physiol. Biochem. 118, 333–341. 10.1016/j.plaphy.2017.06.029, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...