Effect of methyl jasmonate and GA3 on canola (Brassica napus L.) growth, antioxidants activity, and nutrient concentration cultivated in salt-affected soils

. 2024 May 09 ; 24 (1) : 363. [epub] 20240509

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38724910
Odkazy

PubMed 38724910
PubMed Central PMC11080209
DOI 10.1186/s12870-024-05074-9
PII: 10.1186/s12870-024-05074-9
Knihovny.cz E-zdroje

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.

Zobrazit více v PubMed

Saikanth DRK, Kumar S, Rani M, Sharma A, Srivastava S, Vyas D, et al. A comprehensive review on climate change adaptation strategies and challenges in agriculture. Int J Environ Clim Chang. 2023;13:10–9. doi: 10.9734/ijecc/2023/v13i113138. DOI

Oumarou Abdoulaye A, Lu H, Zhu Y, Alhaj Hamoud Y, Sheteiwy M. The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate. 2019;7:124. doi: 10.3390/cli7100124. DOI

Sharma DK, Singh A. Current trends and emerging challenges in sustainable management of salt-affected soils: a critical appraisal. Bioremediat salt Affect Soils Indian Perspect. 2017;:1–40.

Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci. 2015;6:978. doi: 10.3389/fpls.2015.00978. PubMed DOI PMC

Yang S, Chen J, Ding Y, Huang Q, Chen G, Ulhassan Z, et al. Genome-wide investigation and expression profiling of LOR gene family in rapeseed under salinity and ABA stress. Front Plant Sci. 2023;14:1197781. doi: 10.3389/fpls.2023.1197781. PubMed DOI PMC

Maity A, Paul D, Lamichaney A, Sarkar A, Babbar N, Mandal N, et al. Climate change impacts on seed production and quality: current knowledge, implications, and mitigation strategies. Seed Sci Technol. 2023;51:7–38. doi: 10.15258/sst.2023.51.1.07. DOI

Prasad PVV, Staggenborg SA, Ristic Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response Crop Ltd Water Underst Model Water Stress Eff Plant Growth Process. 2008;1:301–55.

Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. 2015;22:4056–75. doi: 10.1007/s11356-014-3739-1. PubMed DOI

Gui Y-W, Sheteiwy MS, Zhu S-G, Batool A, Xiong Y-C. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environ Exp Bot. 2021;181:104287. doi: 10.1016/j.envexpbot.2020.104287. DOI

Sheteiwy MS, Ahmed M, Kobae Y, Basit F, Holford P, Yang H, et al. The effects of microbial fertilizers application on growth, yield and some biochemical changes in the leaves and seeds of guar (Cyamopsis tetragonoloba L) Food Res Int. 2023;172:113122. doi: 10.1016/j.foodres.2023.113122. PubMed DOI

Tanveer M, Ahmed HAI. ROS signalling in modulating salinity stress tolerance in plants. Salt Drought Stress Toler Plants Signal Networks Adapt Mech. 2020;:299–314.

Tuna AL, Kaya C, Altunlu H, Ashraf M. Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress. Aust J Crop Sci. 2013;7:1181–8.

Rasool S, Hameed A, Azooz MM, Muneeb-U-Rehman, Siddiqi TO, Ahmad P. Salt stress: causes, types and responses of plants. In: Ecophysiology and Responses of Plants under Salt Stress. 2012.

Alharby HF, Rizwan M, Iftikhar A, Hussaini KM, ur Rehman MZ, Bamagoos AA, et al. Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicol Environ Saf. 2021;221:112436. doi: 10.1016/j.ecoenv.2021.112436. PubMed DOI

Iftikhar A, Rizwan M, Adrees M, Ali S, ur Rehman MZ, Qayyum MF, et al. Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (Triticum aestivum L.) under cerium oxide nanoparticle stress. Environ Sci Pollut Res. 2020;27:33809–20. doi: 10.1007/s11356-020-09661-9. PubMed DOI

AL-Huqail AA, Alshehri D, Nawaz R, Irshad MA, Iftikhar A, Hussaini KM, et al. The effect of gibberellic acid on wheat growth and nutrient uptake under combined stress of cerium, zinc and titanium dioxide nanoparticles. Chemosphere. 2023;336:139199. doi: 10.1016/j.chemosphere.2023.139199. PubMed DOI

Bhat JA, Basit F, Alyemeni MN, Mansoor S, Kaya C, Ahmad P. Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Plant Physiol Biochem. 2023;198:107678. doi: 10.1016/j.plaphy.2023.107678. PubMed DOI

Khan MN, Khan Z, Luo T, Liu J, Rizwan M, Zhang J, et al. Seed priming with gibberellic acid and melatonin in rapeseed: consequences for improving yield and seed quality under drought and non-stress conditions. Ind Crops Prod. 2020;156:112850. doi: 10.1016/j.indcrop.2020.112850. DOI

Hasan S, Sehar Z, Khan NA. Gibberellic acid and sulfur-mediated reversal of cadmium-inhibited photosynthetic performance in Mungbean (Vigna radiata L.) involves nitric oxide. J Plant Growth Regul. 2020;39:1605–15. doi: 10.1007/s00344-020-10175-4. DOI

Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci. 2021;22:8568. doi: 10.3390/ijms22168568. PubMed DOI PMC

Sheteiwy MS, Ulhassan Z, Qi W, Lu H, AbdElgawad H, Minkina T, et al. Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. Front Plant Sci. 2022;13:886862. doi: 10.3389/fpls.2022.886862. PubMed DOI PMC

Aslam S, Gul N, Mir MA, Asgher M, Al-Sulami N, Abulfaraj AA, et al. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Front Plant Sci. 2021;12:668029. doi: 10.3389/fpls.2021.668029. PubMed DOI PMC

Hemantaranjan A, Lalotra S, Sodani R. Methyl Jasmonate: a potent player in salinity stress. J Plant Sci Res. 2021;37.

Saadati S, Baninasab B, Mobli M, Gholami M. Enhancement of freezing tolerance of olive leaves by foliar application of methyl jasmonate and 24–epibrassinolide through changes in some metabolites and antioxidant activity. Sci Hortic (Amsterdam) 2021;284:110127. doi: 10.1016/j.scienta.2021.110127. DOI

İLBAŞ UYOAİ The effects of Salinity on Germination and Seedling Growth of some Canola varieties. Environ Toxicol Ecol. 2023;3(01):11.

Asaduzzaman M, Pratley JE, Luckett D, Lemerle D, Wu H. Weed management in canola (Brassica napus L): a review of current constraints and future strategies for Australia. Arch Agron Soil Sci. 2020;66:427–44. doi: 10.1080/03650340.2019.1624726. DOI

Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, ur Rahman M, et al. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: an overview. Front Plant Sci. 2021;12:767150. doi: 10.3389/fpls.2021.767150. PubMed DOI PMC

Page AL, Miller RH, Keeny DR. Soil pH and lime requirement. In: Page AL, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2/Agronomy Monographs. 2nd edition. Madison: American Society of Agronomy, Inc. and Soil Science Society of America, Inc.; 1983. pp. 199–208.

Estefan G, Sommer R, Ryan J. Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. 3rd edition. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA); 2013.

Rhoades JD, et al. Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis, Part 3, Chemical methods. Madison, WI, USA: Soil Science Society of America; 1996. pp. 417–35.

Nelson DW, Sommers LE, Total, Carbon . Organic Carbon, and Organic Matter. In: Page AL, editor. Methods of Soil Analysis: part 2 Chemical and Microbiological properties. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America; 1982. pp. 539–79.

Bremner M, et al. Nitrogen-total. In: Sumner DL, Sparks AL, Page PA, Helmke RH, Loeppert NP, Soltanpour AM, et al., editors. Methods of Soil Analysis Part 3. Madison, WI, USA: John Wiley & Sons, Inc; 1996. pp. 1085–121.

Kuo S, et al. Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of Soil Analysis Part 3: Chemical methods. Madison, Wisconsin: John Wiley & Sons, Ltd: SSSA; 2018. pp. 869–919.

Donald AH, Hanson D. Determination of potassium and sodium by flame emmision spectrophotometery. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. 1st edition. Washington, D.C.: CRC Press; 1998. pp. 153–5.

Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological properties. Madison, WI, USA: John Wiley & Sons, Ltd; 2016. pp. 1022–30.

Gee GW, Bauder JW. Particle-size Analysis. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Madison, WI, USA: John Wiley & Sons, Inc.; 2018. pp. 383–411.

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC

Durak I, Yurtarslanl Z, Canbolat O, Akyol Ö. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta. 1993;214:103–4. doi: 10.1016/0009-8981(93)90307-P. PubMed DOI

Aebi H. Catalase in vitro. Methods Enzym. 1984;105:121–6. PubMed

Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–80.

Hernández JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 2002;115:251–7. doi: 10.1034/j.1399-3054.2002.1150211.x. PubMed DOI

Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 2001;42:1265–73. doi: 10.1093/pcp/pce162. PubMed DOI

Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant. 1996;98:685–92. doi: 10.1034/j.1399-3054.1996.980402.x. DOI

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–7. doi: 10.1007/BF00018060. DOI

Miller R. Nitric-perchloric Acid Wet Digestion In An Open Vessel. In: Kalra Y, editor. Handbook of reference methods for plant analysis. 1st edition. Washington, D.C.: CRC Press; 1997. pp. 57–62.

Robinson HF. Principles and procedures of statistics. Agron J. 1961;53.

OriginLab Corporation . OriginPro. Northampton. MA, USA: OriginLab; 2021.

Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules. 2021;11:788. doi: 10.3390/biom11060788. PubMed DOI PMC

Hirayama T, Mochida K. Plant hormonomics: a key tool for deep physiological phenotyping to improve crop productivity. Plant Cell Physiol. 2023;63:1826–39. doi: 10.1093/pcp/pcac067. PubMed DOI PMC

Bandara MS, Tanino KK, Waterer DR. Plant growth regulators and yields of seed potatoes. HortScience. 1995;30:F853–853. doi: 10.21273/HORTSCI.30.4.853F. DOI

Hossain MS, Dietz K-J. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci. 2016;7. PubMed PMC

MILLER G, SUZUKI N, CIFTCI-YILMAZ S. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–67. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI

Li H, Guo Y, Lan Z, Xu K, Chang J, Ahammed GJ, et al. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Hortic Res. 2021;8:57. PubMed PMC

Amiri H, Banakar MH, Ranjbar GH, Ardakani MRS, Omidvari M. Exogenous application of spermidine and methyl jasmonate can mitigate salt stress in fenugreek (Trigonella foenum-graecum L) Ind Crops Prod. 2023;199:116826. doi: 10.1016/j.indcrop.2023.116826. DOI

Salih EGI, Zhou G, Muddathir AM, Ibrahim MEH, Ahmed NE, Adam Ali AY, et al. Effects of seeds priming with plant growth regulators on germination and seedling growth of Hargel (Solenostemma Argel (Del.) Hayne) under salinity stress. Pakistan J Bot. 2022;54:1579–87.

Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci. 2022;23:5186. doi: 10.3390/ijms23095186. PubMed DOI PMC

Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci. 2022;13. PubMed PMC

Hossain A, Pamanick B, Venugopalan VK, Ibrahimova U, Rahman MA, Siyal AL, et al. Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. Emerging plant growth regulators in agriculture. Elsevier; 2022. pp. 1–72.

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci. 2021;11:552969. doi: 10.3389/fpls.2020.552969. PubMed DOI PMC

ROYCHOUDHURY A, BANERJEE A. Metabolic and molecular-genetic regulation of proline signaling and itscross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot. 2015;39:887–910. doi: 10.3906/bot-1503-27. DOI

Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol. 2014;26:561–7. doi: 10.1007/s10811-013-0062-z. DOI

Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97. doi: 10.1016/j.redox.2015.07.008. PubMed DOI PMC

Morsy MR, Jouve L, Hausman J-F, Hoffmann L, Stewart JM. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol. 2007;164:157–67. doi: 10.1016/j.jplph.2005.12.004. PubMed DOI

Afzal S, Chaudhary N, Singh NK. Plant growth regulators. Cham: Springer International Publishing; 2021. Role of soluble sugars in metabolism and sensing under abiotic stress; pp. 305–34.

Martins AO, Omena-Garcia RP, Oliveira FS, Silva WA, Hajirezaei M-R, Vallarino JG, et al. Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environ Exp Bot. 2019;157:331–43. doi: 10.1016/j.envexpbot.2018.10.036. DOI

Faghih S, Ghobadi C, Zarei A. Response of strawberry plant cv. ‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Regul. 2017;36:651–9. doi: 10.1007/s00344-017-9666-x. DOI

Verbeek REM, Van Buyten E, Alam MZ, De Vleesschauwer D, Van Bockhaven J, Asano T, et al. Jasmonate-Induced Defense mechanisms in the Belowground Antagonistic Interaction between Pythium arrhenomanes and Meloidogyne graminicola in Rice. Front Plant Sci. 2019;10:1–15. doi: 10.3389/fpls.2019.01515. PubMed DOI PMC

Cheong J-J, Choi Y, Do Methyl jasmonate as a vital substance in plants. Trends Genet. 2003;19:409–13. doi: 10.1016/S0168-9525(03)00138-0. PubMed DOI

Norastehnia A, Sajedi RH, Nojavan-Asghari M. Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): effect on $α$-amylase activity and ethylene production. Gen Appl Plant Physiol. 2007;33:13–23.

Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008;451:475–9. doi: 10.1038/nature06448. PubMed DOI PMC

Nazir F, Jahan B, Iqbal N, Rajurkar AB, Siddiqui MH, Khan MIR. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa) Plant Physiol Biochem. 2023;202:107990. doi: 10.1016/j.plaphy.2023.107990. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace