Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview

. 2021 ; 12 () : 767150. [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34975951

Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.

Zobrazit více v PubMed

Abbas G., Ahmad S., Ahmad A., Nasim W., Fatima Z., Hussain S., et al. . (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. Forest Meteorol. 247, 42–55. 10.1016/j.agrformet.2017.07.012 DOI

Abiodun O. A. (2017). The Role of Oilseed Crops in Human Diet and Industrial Use in Oilseed Crops. Chichester, NY: John Wiley & Sons Ltd. 10.1002/9781119048800.ch14 DOI

Agrawal G. K., Rakwal R. (2008). Plant Proteomics: Technologies, Strategies, and Applications. Hoboken, NJ: John Wiley & Sons.

Ahammed G. J., Li X., Liu A., Chen S. (2020). Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Reg. 39:10098. 10.1007/s00344-020-10098-0 DOI

Ahmad A., Wajid A., Hussain M., Akhtar J., Hoogenboom G. (2016). Estimation of temporal variation resilience in cotton varieties using statistical models. Pak. J. Agric. Sci. 53:4549. 10.21162/PAKJAS/16.4549 DOI

Ahmad M., Waraich E. A., Hussain S., Ayyub C. M., Ahmad Z., Zulfiqar U. (2021c). Improving heat stress tolerance in camelina sativa and Brassica napus through thiourea seed priming. J. Plant Growth Reg. 54, 1–17. 10.1007/s00344-021-10482-4 DOI

Ahmad M., Waraich E. A., Tanveer A., Anwar-ul-Haq M. (2021b). Foliar applied thiourea improved physiological traits and yield of camelina and canola under normal and heat stress conditions. J. Soil Sci. Plant Nutr. 21, 1666–1678. 10.1007/s42729-021-00470-8 DOI

Ahmad M., Waraich E. A., Zulfiqar U., Ullah A., Farooq M. (2021a). Thiourea application improves heat tolerance in camelina (Camelina sativa L. Crantz) by modulating gas exchange, antioxidant defense and osmoprotection. Ind. Crops Prod. 170:113826. 10.1016/j.indcrop.2021.113826 DOI

Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Cri. Rev. Biotech. 30, 161–175. 10.3109/07388550903524243 PubMed DOI

Ahmad S., Ghaffar A., Khan M. A., Mahmood A. (2020). Evaluation of different production systems in combination with foliar sulphur application for sunflower (Helianthus annuus L.) under arid climatic conditions of Pakistan. Sarhad J. Agric. 36:1278. 10.17582/journal.sja/2020/36.4.1266.1278 PubMed DOI

Ai Q., Mai K., Zhang W., Xu W., Tan B., Zhang C., et al. . (2007). Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comp. Biochem. Physiol. Part A: Mol. and Integra. Physiol. 147, 502–508. 10.1016/j.cbpa.2007.01.026 PubMed DOI

Akladious S. A. (2014). Influence of thiourea application on some physiological and molecular criteria of sunfower (Helianthus annuus L.) plants under conditions of heat stress. Protoplasma 251, 625–638. 10.1007/s00709-013-0563-2 PubMed DOI

Albrecht V., Ritz O., Linder S., Harter K., Kudla J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+ regulated kinases. EMBO J. 20, 1051–1063. 10.1093/emboj/20.5.1051 PubMed DOI PMC

Allen L. H., Jr, Zhang L., Boote K. J., Hauser B. A. (2018). Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant. Crop J. 6, 148–161. 10.1016/j.cj.2017.10.005 DOI

Allen G. J., Murata Y., Chu S. P., Nafisi M., Schroeder J. I. (2002). Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis Farnesyltransferase mutant era1-2. Plant Cell 14, 1649–1662. 10.1105/tpc.010448 PubMed DOI PMC

Almeselmani M., Deshmukh P. S., Sairam R. K., Kushwaha S. R., Singh T. P. (2006). Protective role of antioxidant, enzymes under high temperature stress. Plant Sci. 171, 382–388. 10.1016/j.plantsci.2006.04.009 PubMed DOI

Amooaghaie R., Moghym S. (2011). Effect of polyamines on thermotolerance and membrane stability of soybean seedling. Afr. J. Biotech. 10, 9677–9682. 10.5897/AJB10.2446 PubMed DOI

Angadi S. V., Cutforth H. W., Miller P. R., McConkey B. G., Entz M. H., Brandt S. A., et al. . (2000). Response of three Brassica species to high temperature stress during reproductive growth. Cana. J. Plant Sci. 80, 693–701. 10.4141/P99-152 DOI

Anzalone A. V., Randolph P. B., Davis J. R., Sousa A. A., Koblan L. W., Levy J. M., et al. . (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157. 10.1038/s41586-019-1711-4 PubMed DOI PMC

Argosubekti N. (2020). A review of heat stress signaling in plants. IOP Conference Series: Earth Environ. Sci. 484:012041. 10.1088/1755-1315/484/1/012041 DOI

Arkhipova T. N., Prinsen E., Veselov S. U., Martinenko E. V., Melentiev A. I., Kudoyarova G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292, 305–315. 10.1007/s11104-007-9233-5 DOI

Arshad M., Feyissa B. A., Amyot L., Aung B., Hannoufa A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 258, 122–136. 10.1016/j.plantsci.2017.01.018 PubMed DOI

Asano T., Hayashi N., Kikuchi S., Ohsugi R. (2012). CDPK-mediated abiotic stress signaling. Plant Signal. Behav. 7, 817–821. 10.4161/psb.20351 PubMed DOI PMC

Ashraf M. A., Akbar A., Askari S. H., Iqbal M., Rasheed R., Hussain I. (2018). Recent Advances in Abiotic Stress Tolerance of Plants through Chemical Priming: An Overview. Berlin: Springer. 10.1007/978-981-13-0032-5_4 DOI

Awais M., Wajid A., Bashir M. U., Habib-ur-Rahman M., Raza M. A. S., Ahmad A., et al. . (2017a). Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment. Environ. Sci. Poll. Res. 24, 17511–17525. 10.1007/s11356-017-9308-7 PubMed DOI

Awais M., Wajid A., Nasim W., Ahmad A., Saleem M. F., Raza M. A. S., et al. . (2017b). Modeling the water and nitrogen productivity of sunflower using OILCROP-SUN model in Pakistan. Field Crops Res. 205, 67–77. 10.1016/j.fcr.2017.01.013 DOI

Azharudheen T. P. M., Yadava D. K., Singh N., Vasudev S., Prabhu K. V. (2013). Screening Indian mustard (Brassica juncea L. Czern & Coss.) germplasm for seedling thermo-tolerance using a new screening protocol. Africa. J. Agric. Res. 8, 4755–4760. 10.5897/AJAR2013.7681 PubMed DOI

Bajguz A. (2011). Brassinosteroids-occurence and chemical structures in plants, in Brassinosteroids: A Class of Plant Hormone (Dordrecht: Springer; ). 10.1007/978-94-007-0189-2_1 DOI

Balfagón D., Sengupta S., Gómez-Cadenas A., Fritschi F. B., Azad R., Mittler R., et al. . (2019). Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 181, 1668–1682. 10.1104/pp.19.00956 PubMed DOI PMC

Bassegio D., Zanotto M. D. (2020). Growth, yield, and oil content of Brassica species under Brazilian tropical conditions. Bragantia 79, 203–212. 10.1590/1678-4499.20190411 DOI

Bawa G., Feng L., Chen G., Chen H., Hu Y., Pu T., et al. . (2020). Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiol. Plant. 170, 345–356. 10.1111/ppl.13158 PubMed DOI

Bhardwaj A. R., Joshi G., Kukreja B., Malik V., Arora P., Pandey R., et al. . (2015). Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 15, 1–15. 10.1186/s12870-014-0405-1 PubMed DOI PMC

Bhat M. A., Mir R. A., Kumar V., Shah A. A., Zargar S. M., Rahman S., et al. . (2021). Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol. Plant. 172, 1255–1268. 10.1111/ppl.13359 PubMed DOI

Bibi A., Oosterhuis D., Gonias E. (2008). Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 12, 150–159.

Bita C., Gerats T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4:273. 10.3389/fpls.2013.00273 PubMed DOI PMC

Blum A. (1988). Plant Breeding for Stress Environments. Boca Raton, FL: CRC Press Inc.

Boem F. H. G., Lavado R. S., Porcelli C. A. (1996). Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop Res. 47, 175–179. 10.1016/0378-4290(96)00025-1 DOI

Bohnert H. J., Gong Q., Li P., Ma S. (2006). Unraveling abiotic stress tolerance mechanisms getting genomics going. Cur. Opin. Plant Bio. 9, 180–188. 10.1016/j.pbi.2006.01.003 PubMed DOI

Bokszczanin K. L., Fragkostefanakis S. (2013). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci. 4:315. 10.3389/fpls.2013.00315 PubMed DOI PMC

Bor M., Seckin B., Ozgur R., Yilmaz O., Ozdemir F., Turkan I. (2009). Comparative effects of drought, salt, heavy metal and heat stresses on gamma-amino butryric acid levels of sesame (Sesamum indicum L.). Acta Physiol. Planta 31, 655–659. 10.1007/s11738-008-0255-2 DOI

Brunel-Muguet S., d'Hooghe P., Bataillé M. P., Larré C., Kim T. H., Trouverie J., et al. . (2015). Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). Front. Plant Sci. 6:213. 10.3389/fpls.2015.00213 PubMed DOI PMC

Burke J. J. (2001). Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Planta 112, 167–170. 10.1034/j.1399-3054.2001.1120203.x DOI

Cai D., Xiao Y., Yang W., Ye W., Wang B., Younas M., et al. . (2014). Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theo. Appl. Genet. 127, 85–96. 10.1007/s00122-013-2203-9 PubMed DOI

Campobenedetto C., Mannino G., Agliassa C., Acquadro A., Contartese V., Garabello C., et al. . (2020). Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean. Plants 9:1308. 10.3390/plants9101308 PubMed DOI PMC

Carmo-Silva A. E., Salvucci M. E. (2012). The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. Planta 236, 1433–1445. 10.1007/s00425-012-1691-1 PubMed DOI

Catiempo R. L., Photchanachai S., Bayogan E. R. V., Vichitsoonthonkul T. (2021). Possible role of nonenzymatic antioxidants in hydroprimed sunflower seeds under heat stress. Crop Sci. 61, 1328–1339. 10.1002/csc2.20403 PubMed DOI

Chakraborty U., Pradhan D. (2011). High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J. Plant Inter 6, 43–52. 10.1080/17429145.2010.513484 DOI

Champagne A., Boutry M. (2013). Proteomics of non-model plant species. Proteomics 13, 663–673. 10.1002/pmic.201200312 PubMed DOI

Chandramouli K., Qian P. Y. (2009). Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum. Genom. Proteom. 2009:239204. 10.4061/2009/239204 PubMed DOI PMC

Chandrasekaran U., Xu W., Liu A. (2014). Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci. 4:33. 10.1186/2045-3701-4-33 PubMed DOI PMC

Chaves-Sanjuan A., Sanchez-Barrena M. J., Gonzalez-Rubio J. M., Moreno M., Ragel P., Jimenez M., et al. . (2014). Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc. Nat. Acad. Sci. U.S.A. 111, E4532–E4541. 10.1073/pnas.1407610111 PubMed DOI PMC

Chebrolu K. K., Fritschi F. B., Ye S., Krishnan H. B., Smith J. R., Gillman J. D. (2016). Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12, 1–14. 10.1007/s11306-015-0941-1 DOI

Chen B., Niu F., Liu W. Z., Yang B., Zhang J., Ma J., et al. . (2016). Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res. 23, 101–114. 10.1093/dnares/dsv040 PubMed DOI PMC

Chen L., Ren F., Zhou L., Wang Q. Q., Zhong H., Li X. B. (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63, 6211–6222. 10.1093/jxb/ers273 PubMed DOI PMC

Chen S., Guo Y., Sirault X., Stefanova K., Saradadevi R., Turner N. C., et al. . (2019). Nondestructive phenomic tools for the prediction of heat and drought tolerance at anthesis in Brassica species. Plant Phenom. 9:989. 10.34133/2019/3264872 PubMed DOI PMC

Chen S., Saradadevi R., Vidotti M. S., Fritsche-Neto R., Crossa J., Siddique K. H., et al. . (2021a). Female reproductive organs of Brassica napus are more sensitive than male to transient heat stress. Euphytica 217, 1–12. 10.1007/s10681-021-02859-z DOI

Chen S., Stefanova K., Siddique K. H., Cowling W. A. (2021b). Transient daily heat stress during the early reproductive phase disrupts pod and seed development in Brassica napus L. Food Energy Sec. 10:e262. 10.1002/fes3.262 PubMed DOI

Chen X., Zhu W., Azam S., Li H., Zhu F., Li H., et al. . (2013). Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotech. J. 11, 115–127. 10.1111/pbi.12018 PubMed DOI

Chen Z., Shinano T., Ezawa T., Wasaki J., Kimura K., Osaki M., et al. . (2009). Elemental interconnections in Lotus japonicus: A systematic study of the effects of elements additions on different natural variants. Soil Sci. Plant Nut. 55, 91–101. 10.1111/j.1747-0765.2008.00311.x DOI

Chen Z., Tonnis B., Morris B., Wang R. R. B., Zhang A. L., Pinnow D. (2014). Variation in seed fatty acid composition and sequence divergence in the FAD2 gene coding region between wild and cultivated sesame. J. Agri. Food Chem. 62, 11706–11710. 10.1021/jf503648b PubMed DOI

Chennakesavulu K., Singh H., Trivedi P. K., Jain M., Yadav S. R. (2021). State-of-the-art in CRISPR technology and engineering drought, salinity, and thermo-tolerant crop plants. Plant Cell Rep. 1–17. 10.1007/s00299-021-02681-w PubMed DOI

Chikkaputtaiah C., Debbarma J., Baruah I., Prasanna H., Boruah D., Curn V. (2017). Molecular genetics and functional genomics of abiotic stress-responsive genes in oilseed rape (Brassica napus L.): A review of recent advances and future. Plant Biotech. Rep. 11, 365–384. 10.1007/s11816-017-0458-3 DOI

Chimenti D. A., Hall A. J., Sol Lopez M. (2001). Embryo-growth rate and duration in sunflower as affected by temperature. Field Great Plains. J. Eco. Ento. 76, 952–956. 10.1016/S0378-4290(00)00135-0 DOI

Chinnusamy V., Schumaker K., Zhu J. K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55, 225–236. 10.1093/jxb/erh005 PubMed DOI

Choudhury S. R., Bisht N. C., Thompson R., Todorov O., Pandey S. (2011). Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS ONE 6:e23361. 10.1371/journal.pone.0023361 PubMed DOI PMC

Cohen I., Zandalinas S. I., Fritschi F. B., Sengupta S., Fichman Y., Azad R. K., et al. . (2021). The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiol. Plant. 172, 41–52. 10.1111/ppl.13269 PubMed DOI

Colebrook E. H., Thomas S. G., Phillips A. L., Hedden P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Bio. 217, 67–75. 10.1242/jeb.089938 PubMed DOI

Collado-González J., Piñero M. C., Otálora G., López-Marín J., Del Amor F. M. (2021). Effects of different nitrogen forms and exogenous application of putrescine on heat stress of cauliflower: photosynthetic gas exchange, mineral concentration and lipid peroxidation. Plants 10:152. 10.3390/plants10010152 PubMed DOI PMC

Cortijo S., Charoensawan V., Brestovitsky A., Buning R., Ravarani C., Rhodes D., et al. . (2017). Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol. Plant 10, 1258–1273. 10.1016/j.molp.2017.08.014 PubMed DOI PMC

Crafts-Brandner S. J., Salvucci M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129, 1773–1780. 10.1104/pp.002170 PubMed DOI PMC

Crisp P. A., Ganguly D., Eichten S. R., Borevitz J. O., Pogson B. J. (2016). Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2:1501340. 10.1126/sciadv.1501340 PubMed DOI PMC

Czarnecka E., Key J. L., Gurley W. B. (1989). Regulatory domains of the Gmhsp77.5-E heat shock promoter of soybean. Mol. Cell. Biol. 9, 3457–3463. 10.1128/mcb.9.8.3457 PubMed DOI PMC

Das A., Rushton P. J., Rohila J. S. (2017). Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat. Stress Plants 6:21. 10.3390/plants6020021 PubMed DOI PMC

de Almeida L. M. M., Avice J. C., Morvan-Bertrand A., Wagner M. H., González-Centeno M. R., Teissedre P. L., et al. . (2021). High temperature patterns at the onset of seed maturation determine seed yield and quality in oilseed rape (Brassica napus L.) in relation to sulphur nutrition. Environ. Exp. Bot. 185:104400. 10.1016/j.envexpbot.2021.104400 DOI

De La Haba P., Amil-Ruiz F., Agüera E. (2020). Physiological and proteomic characterization of the elevated temperature effect on sunflower (Helianthus annuus L.) primary leaves. Russ. J. Plant Physiol. 67, 1094–1104. 10.1134/S1021443720060060 DOI

De la Haba P., De la Mata L., Molina E., Aguera E. (2014). High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Can. J. Plant Sci. 94, 659–669. 10.4141/cjps2013-276 DOI

de Zelicourt A., Al-Yousif M., Hirt H. (2013). Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245. 10.1093/mp/sst028 PubMed DOI

Decaestecker W., Buono R. A., Pfeiffer M. L., Vangheluwe N., Jourquin J., Karimi M., et al. . (2019). CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887. 10.1105/tpc.19.00454 PubMed DOI PMC

Demirel U., Gür A., Can N., Memon A. R. (2014). Identification of heat responsive genes in cotton. Biol. Plant. 58, 515–523. 10.1007/s10535-014-0414-9 DOI

Deshmukh R., Sonah H., Patil G., Chen W., Prince S., Mutava R., et al. . (2014). Integrating omic approaches for abiotic stress tolerance in soybean. Front. Plant Sci. 5:244. 10.3389/fpls.2014.00244 PubMed DOI PMC

Deshmukh R. K., Vivancos J., Guérin V., Sonah H., Labbé C., Belzile F., et al. . (2013). Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol. Bio. 83, 303–315. 10.1007/s11103-013-0087-3 PubMed DOI

Devireddy A. R., Zandalinas S. I., Fichman Y., Mittler R. (2021). Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J. 105, 459–476. 10.1111/tpj.15010 PubMed DOI

Di F., Jian H., Wang T., Chen X., Ding Y., Du H., et al. . (2018). Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes 9:156. 10.3390/genes9030156 PubMed DOI PMC

Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. (2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Bio. Chem. 276, 39586–39591. 10.1074/jbc.M103081200 PubMed DOI

Ding X., Guo J., Zhang Q., Yu L., Zhao T., Yang S. (2021). Heat-responsive miRNAs participate in the regulation of male fertility stability in soybean CMS-based F1 under high temperature stress. Int. J. Mol. Sci. 22:2446. 10.3390/ijms22052446 PubMed DOI PMC

Ding X., Guo Q., Li Q., Gai J., Yang S. (2020). Comparative transcriptomics analysis and functional study reveal important role of high-temperature stress response gene GmHSFA2 during flower bud development of CMS-based F1 in soybean. Front. Plant Sci. 11:e600217. 10.3389/fpls.2020.600217 PubMed DOI PMC

Dixit A., Tomar P., Vaine E., Abdullah H., Hazen S., Dhankher P. (2018). A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant. Cell Environ. 41, 1171–1185. 10.1111/pce.13103 PubMed DOI

Djanaguiraman M., Prasad P. V. V., Boyle D. L., Schapaugh W. T. (2011). High-temperature stress and soybean leaves: leaf anatomy and photosynthesis. Crop Sci. 51, 2125–2131. 10.2135/cropsci2010.10.0571 PubMed DOI

Dong X., Yi H., Lee J., Nou I. S., Han C. T., Hur Y. (2015). Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS ONE 10:e0130451. 10.1371/journal.pone.0130451 PubMed DOI PMC

Dowell J. A., Reynolds E. C., Pliakas T. P., Mandel J. R., Burke J. M., Donovan L. A., et al. . (2019). Genome-wide association mapping of floral traits in cultivated sunflower (Helianthus annuus). J. Heredity 110, 275–286. 10.1093/jhered/esz013 PubMed DOI

Driedonks N., Rieu I., Vriezen W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Repro. 29, 67–79. 10.1007/s00497-016-0275-9 PubMed DOI PMC

Dutta S., Mohanty S., Tripathy B. C. (2009). Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol. 150, 1050–1061. 10.1104/pp.109.137265 PubMed DOI PMC

Edelman L., Czarnecka E., Key J. L. (1988). Induction and accumulation of heat shock-specific poly (A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol. 86, 1048–1056. 10.1104/pp.86.4.1048 PubMed DOI PMC

Ekinci R., Sema B., Emine K., Çetin K. (2017). The effects of high temperature stress on some agronomic characters in cotton. Pak. J. Bot. 49, 503–508.

El-Daim I. A. A., Bejai S., Meijer J. (2014). Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379, 337–350. 10.1007/s11104-014-2063-3 DOI

Elferjani R., Soolanayakanahally R. (2018). Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front. Plant Sci. 9:1224. 10.3389/fpls.2018.01224 PubMed DOI PMC

Falush D., Stephens M., Pritchard J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587. 10.1093/genetics/164.4.1567 PubMed DOI PMC

Fass M. I., Rivarola M., Ehrenbolger G. F., Maringolo C. A., Montecchia J. F., Quiroz F., et al. . (2020). Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-seq analysis. Sci. Rep. 10, 1–14. 10.1038/s41598-020-70315-4 PubMed DOI PMC

Feng Z., Ding C., Li W., Wang D., Cui D. (2020). Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 310:125914. 10.1016/j.foodchem.2019.125914 PubMed DOI

Fernandez P., Soria M., Blesa D., DiRienzo J., Moschen S., Rivarola M., et al. . (2012). Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray. PLoS ONE 7:e45899. 10.1371/journal.pone.0045899 PubMed DOI PMC

Fischbach M. A., Clardy J. (2007). One pathway, many products. Nat. Chem. Bio. 3, 353–355. 10.1038/nchembio0707-353 PubMed DOI

Fischinger S. A., Schulze J. (2010). The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation. J. Exp. Bot. 61, 2281–2291. 10.1093/jxb/erq055 PubMed DOI PMC

Flint-Garcia S. A., Thornsberry J. M., Buckler E. S. (2003). Structure of linkage disequilibrium in plants. Ann. Rev. Plant Bio. 54, 357–374. 10.1146/annurev.arplant.54.031902.134907 PubMed DOI

Furbank R. T., Tester M. (2011). Phenomics-technologies to relieve the phenotyping bottleneck. Trend. Plant Sci. 16, 635–644. 10.1016/j.tplants.2011.09.005 PubMed DOI

Gamalero E., Glick B. R. (2012). Ethylene and abiotic stress tolerance in plants, in Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change (New York, NY: Springer; ).

Gao G., Hu J., Zhang X., Zhang F., Li M., Wu X. (2021). Transcriptome analyses reveals genes expression pattern of seed response to heat stress in Brassica napus L. Oil Crop Sci. 6, 87–96. 10.1016/j.ocsci.2021.04.005 DOI

Gao G., Li J., Li H., Li F., Xu K., Yan G., et al. . (2014). Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 64, 125–133. 10.1270/jsbbs.64.125 PubMed DOI PMC

Gao Y., Zhao Y., Li T., Ren C., Liu Y., Wang M. (2010). Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol. Boil. Rep 28, 450–459. 10.1007/s11105-009-0169-1 PubMed DOI

Gasiunas G., Barrangou R., Horvath P., Siksnys V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceed. Nat. Acad. Sci. U.S.A. 109, E2579–E2586. 10.1073/pnas.1208507109 PubMed DOI PMC

Gaudelli N. M., Komor A. C., Rees H. A., Packer M. S., Badran A. H., Bryson D. I., et al. . (2017). Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551, 464–471. 10.1038/nature24644 PubMed DOI PMC

Ghaffar A., Rahman M. H., Ali H. R., Haider G., Ahmad S., Fahad S., et al. . (2020). Modern concepts and techniques for better cotton production, in Cotton Production and Uses, eds Ahmad S., Hasanuzzaman M. (Singapore: Springer; ). 10.1007/978-981-15-1472-2_29 DOI

Giacomelli J. I., Weigel D., Chan R. L., Manavella P. A. (2012). Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol. 195, 766–773. 10.1111/j.1469-8137.2012.04259.x PubMed DOI

Gilroy S., Białasek M., Suzuki N., Górecka M., Devireddy A. R., Karpiński S., et al. . (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615. 10.1104/pp.16.00434 PubMed DOI PMC

Gorzin M., Ghaderi Far F., Sadeghipour H. R., Zeinali E. (2020). Induced thermo-dormancy in rapeseed (Brassica napus L.) cultivars by sub- and supra-optimal temperatures. J. Plant Growth Reg. 40, 2164–2177. 10.1007/s00344-020-10266-2 DOI

Goyal M., Asthir B. (2016). Role of sulphydral compounds on antioxidant defense mechanism under high temperature stress in wheat. Ind. J. Agric. Biochem. 29, 17–22. 10.5958/0974-4479.2016.00003.4 DOI

Guo B., Fedorova N. D., Chen X., Wan C. H., Wang W., Nierman W. C., et al. . (2011). Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3, 737–753. 10.3390/toxins3070737 PubMed DOI PMC

Guo J., Wang Y., Song C., Zhou J., Qiu L., Huang H., et al. . (2010). A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann. Bot. 106, 505–514. 10.1093/aob/mcq125 PubMed DOI PMC

Guo Y., Qiu Q. S., Quintero F. J., Pardo J. M., Ohta M., Zhang C., et al. . (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell. 16, 435–449. 10.1105/tpc.019174 PubMed DOI PMC

Gupta M., Bhaskar P. B., Sriram S., Wang P. H. (2017). Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep. 36, 637–652. 10.1007/s00299-016-2064-1 PubMed DOI

Gusta L. V., O'Conner B. J., Bhatty R. S. (1997). Flax (Linum usitatissimum L.) response to chilling and heat stress on flowering and seed yield. Can. J. Plant Sci. 77, 97–99. 10.4141/P95-205 DOI

Hajiebrahimi A., Owji H., Hemmati S. (2017). Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus. Genome 60, 797–814. 10.1139/gen-2017-0059 PubMed DOI

Hameed A., Goher M., Iqbal N. (2012). Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. J. Plant Growth Reg. 31, 283–291. 10.1007/s00344-011-9238-4 DOI

Hameed A., Sheikh M. A., Hameed A., Farooq T., Basra S. M. A., Jamil A. (2013). Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica 57, 97–110.

Hammac W. A., Maaz T. M., Koenig R. T., Burke I. C., Pan W. L. (2017). Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein, and yield over nitrogen and sulfur. J. Agric. Food Chem. 65, 10429–10438. 10.1021/acs.jafc.7b02778 PubMed DOI

Han C., Yin X., He D., Yang P. (2013). Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS ONE 8:e56947. 10.1371/journal.pone.0056947 PubMed DOI PMC

Hao Y. J., Wei W., Song Q. X., Chen H. W., Zhang Y. Q., Wang F., et al. . (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 68, 302–313. 10.1111/j.1365-313X.2011.04687.x PubMed DOI

Hasanuzzaman M., Bhuyan M. H. M., Zulfiqar F., Raza A., Mohsin S. M., Mahmud J. A., et al. . (2020a). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. 10.3390/antiox9080681 PubMed DOI PMC

Hasanuzzaman M., Nahar K., Fujita M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants, in Abiotic Stress-Plant Responses and Applications in Agriculture (IntechOpen), 169–205. PubMed

Hasanuzzaman M., Nahar K., Khan M. I. R., Al Mahmud J., Alam M. M., Fujita M. (2020b). Regulation of reactive oxygen species metabolism and glyoxalase systems by exogenous osmolytes confers thermotolerance in Brassica napus. Gesunde Pfanz 72, 3–16. 10.1007/s10343-019-00476-4 DOI

Hatfield J. L., Dold C. (2018). Climate change impacts on corn phenology and productivity. Corn 95:76933. 10.5772/intechopen.76933 PubMed DOI

Haung J. Y., Barve I. J., Sun C. M. (2019). One-pot synthesis of 4-arylidene imidazolin-5-ones by reaction of amino acid esters with isocyanates and α-bromoketones. Org. Biomol. Chem. 17, 3040–3047. 10.1039/C8OB03111H PubMed DOI

He X., Liu W., Li W., Liu Y., Wang W., Xie P., et al. . (2020). Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress. J. Plant Physiol. 255:153251. 10.1016/j.jplph.2020.153251 PubMed DOI

Heckathorn S. A., Downs C. A., Coleman J. S. (1998). Nuclear-encoded chloroplast proteins accunulated in the cytosol during severe heat stress. Inter. J. Plant Sci. 159, 39–45. 10.1086/297519 DOI

Hedhly A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 74, 9–16. 10.1016/j.envexpbot.2011.03.016 DOI

Hemantaranjan A., Bhanu A. N., Singh M. N., Yadav D. K., Patel P. K., Singh R., et al. . (2014). Heat stress responses and thermos-tolerance. Adv. Plants Agric. Res. 12, 10–15406. PubMed

Hemantaranjan A., Malik C. P., Bhanu A. N. (2018). Physiology of heat stress and tolerance mechanisms-an overview. J. Plant Sci. Res. 34, 51–64.

Hernández-Clemente R., Hornero A., Mottus M. (2019). Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: Lessons learned from empirical relationships and radiative transfer modelling. Cur. Forest. Rep. 5, 169–183. 10.1007/s40725-019-00096-1 DOI

Herritt M. T., Fritschi F. B. (2020). Characterization of photosynthetic phenotypes and chloroplast ultrastructural changes of soybean (Glycine max) in response to elevated air temperatures. Front. Plant Sci. 11:153. 10.3389/fpls.2020.00153 PubMed DOI PMC

Hiei Y., Komari T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Prot. 3, 824–834. 10.1038/nprot.2008.46 PubMed DOI

Hilker M., Schmülling T. (2019). Stress priming, memory, and signalling. Plants 42, 753–761. 10.1111/pce.13526 PubMed DOI

Horton P., Ruban A. V., Walters R. G. (1996). Regulation of light harvesting in green plants. Ann. Rev. Plant Bio 47, 655–684. 10.1146/annurev.arplant.47.1.655 PubMed DOI

Hossain A., Skalicky M., Brestic M., Maitra S., Ashraful Alam M., Syed M. A., et al. . (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agron 11:241. 10.3390/agronomy11020241 DOI

Howarth C. J. (2005). Genetic Improvements of Tolerance to High Temperature in Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. New York, NY: Haworth Press Inc.

Huang R., Liu Z., Xing M., Yang Y., Wu X., Liu H., et al. . (2019a). Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway. Plant Cell Physiol. 60, 1457–1470. 10.1093/pcp/pcz052 PubMed DOI

Huang Y., Xuan H., Yang C., Guo N., Wang H., Zhao J., et al. . (2019b). GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Sci. 285, 26–33. 10.1016/j.plantsci.2019.04.016 PubMed DOI

Ihsan M. Z., Daur I., Alghabari F., Alzamanan S., Rizwan S., Ahmad M., et al. . (2019). Heat stress and plant development: role of sulphur metabolites and management strategies. Acta Agric. Scand, Section B-Soil Plant Sci. 69, 332–342. 10.1080/09064710.2019.1569715 DOI

Imran M., Khan A. M., Shahzad R., Bilal S., Khan M., Yun B. W., et al. . (2021). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26:5116. 10.3390/molecules26175116 PubMed DOI PMC

IPCC (2018). Fifth Assessment Report. New York, NY: Cambridge University Press.

Ismail I., Mehmood A., Qadir M., Husna A. I., Hamayun M., Khan N. (2020). Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pak. J. Bot. 52, 1857–1865. 10.30848/PJB2020-5(10) DOI

Jackson S. A., Iwata A., Lee S. H., Schmutz J., Shoemaker R. (2011). Sequencing crop genomes: approaches and applications. New Phytol. 191, 915–925. 10.1111/j.1469-8137.2011.03804.x PubMed DOI

Jagadish S. K., Way D. A., Sharkey T. D. (2021). Plant heat stress: Concepts directing future research. Plant Cell Environ. 44, 1992–2005. 10.1111/pce.14050 PubMed DOI

Janeczko A., Okleštková J., Pociecha E., Kościelniak J., Mirek M. (2011). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol. Planta 33, 1249–1259. 10.1007/s11738-010-0655-y DOI

Jaradat A. A. (2016). Breeding oilseed crops for climate change, in Breeding Oilseed Crops for Sustainable Production (Minnesota, MN: Academic Press; ). 10.1016/B978-0-12-801309-0.00018-5 DOI

Jespersen D. (2020). Heat shock induced stress tolerance in plants: Physiological, biochemical, and molecular mechanisms of acquired tolerance, in Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants, 1st ed. Eds Hossain M. A., Liu L., David J., Burritt D. (London: Academic Press Elsevier Inc.). 10.1016/B978-0-12-817892-8.00010-6 DOI

Jha U. C., Bohra A., Singh N. P. (2014). Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 133, 679–701. 10.1111/pbr.12217 DOI

Jian H., Lu K., Yang B., Wang T., Zhang L., Zhang A., et al. . (2016). Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front. Plant Sci. 7:1464. 10.3389/fpls.2016.01464 PubMed DOI PMC

Jiang H., Huang L., Ren X., Chen Y., Zhou X., Xia Y., et al. . (2014). Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) minicore collection. J. Integ. Plant Bio. 56, 159–169. 10.1111/jipb.12132 PubMed DOI

Jiang J., Shao Y., Du K., Ran L., Fang X., Wang Y. (2013). Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genomics 1, 14–72. 10.1186/1471-2164-14-72 PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. 10.1126/science.1225829 PubMed DOI PMC

Jumrani K., Bhatia V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol. Mol. Boil. Plant 24, 37–50. 10.1007/s12298-017-0480-5 PubMed DOI PMC

Jumrani K., Bhatia V. S., Pandey G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photo. Res. 131, 333–350. 10.1007/s11120-016-0326-y PubMed DOI

Junior C. A. S., D'Amico-Damião V., Carvalho R. F. (2021). Phytochrome type B family: The abiotic stress responses signaller in plants. Ann. App. Biol. 178, 135–148. 10.1111/aab.12655 DOI

Kagale S., Divi U. K., Krochko J. E., Keller W. A., Krishna P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225, 353–364. 10.1007/s00425-006-0361-6 PubMed DOI

Kang S. M., Khan A. L., Waqas M., Asaf S., Lee K. E., Park Y. G., et al. . (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Int. 14, 416–423. 10.1080/17429145.2019.1640294 DOI

Kanojia A., Dijkwel P. P. (2018). Abiotic stress responses are governed by reactive oxygen species and age. Ann. Plant Rev. 1, 1–32. 10.1002/9781119312994.apr0611 PubMed DOI

Kaur S., Gupta S. K., Sukhija P. S., Munshi S. K. (1990). Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur application. Plant Sci. 66, 181–184. 10.1016/0168-9452(90)90202-Y DOI

Kavita P. A., Pandey A. (2017). Physiological attributes for screening of Indian mustard (Brassica juncea L. Czern and Coss) genotypes during terminal heat stress. Int. J. Curr. Micro. Appl. Sci. 6, 2908–2913. 10.20546/ijcmas.2017.609.357 DOI

Kazan K., Manners J. M. (2013). MYC2: the master in action. Mol. Plant 6, 686–703. 10.1093/mp/sss128 PubMed DOI

Ke Q., Kim H. S., Wang Z., Ji C. Y., Jeong J. C., Lee H. S., et al. . (2017). Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnol. J. 15, 331–343. 10.1111/pbi.12628 PubMed DOI PMC

Keller I., Seehausen O. (2012). Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799. 10.1111/j.1365-294X.2011.05397.x PubMed DOI

Keshavarz H. (2020). Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Gra. Ace 71:373. 10.3989/gya.0572191 DOI

Khan M. A., Asaf S., Khan A. L., Jan R., Kang S. M., Kim K. M., et al. . (2020). Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Micro. 20, 1–14. 10.1186/s12866-020-01822-7 PubMed DOI PMC

Kiani S. P., Grieu P., Maury P., Hewezi T., Gentzbittel L., Sarrafi A. (2007). Genetic variability for physiological traits under drought conditions and differential expression of water-associated genes in sunflower (Helianthus annuus L.). Theo. Appl. Gene 114, 193–207. 10.1007/s00122-006-0419-7 PubMed DOI

Kim K. H., Kang Y. J., Kim D. H., Yoon M. Y., Moon J. K., Kim M. Y., et al. . (2011). RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and susceptible alleles. DNA Res. 18, 483–497. 10.1093/dnares/dsr033 PubMed DOI PMC

Kim R. J., Kim H. U., Suh M. C. (2019). Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind. Crop. Prod. 138:111475. 10.1016/j.indcrop.2019.111475 DOI

Klay I., Pirrello J., Riahi L., Bernadac A., Cherif A., Bouzayen M., et al. . (2014). Ethylene response factor Sl-ERF. B. 3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci. World J. 2014:167681. 10.1155/2014/167681 PubMed DOI PMC

Klueva N. Y., Maestri E., Marmiroli N., Nguyen H. T. (2001). Mechanisms of thermos-tolerance in crops, in Crop Responses and Adaptations to Temperature Stress, ed Basra A. S. (Binghamton, NY: Food Products Press; ).

Kobayashi Y., Murata M., Minami H., Yamamoto S., Kagaya Y., Hobo T., et al. . (2005). Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 44, 939–949. 10.1111/j.1365-313X.2005.02583.x PubMed DOI

Komor A. C., Kim Y. B., Packer M. S., Zuris J. A., Liu D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424. 10.1038/nature17946 PubMed DOI PMC

Koscielny C. B., Hazebroek J., Duncan R. W. (2018). Phenotypic and metabolic variation among spring Brassica napus genotypes during heat stress. Crop Past. Sci. 69, 284–295. 10.1071/CP17259 PubMed DOI

Krumbein A., Schonhof I., Rühlmann J., Widell S. (2001). Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in brassicacea, in Plant Nutrition. Food Security and Sustainability of Agro-Ecosystems Through Basic and Applied Research, eds Horst W. J., Schenk M. K., Bürkert A., Claassen N., Flessa H. (Dordrecht: Kluwer Academic Publishers; ).

Krysan P. J., Colcombet J. (2018). Cellular complexity in MAPK signaling in plants: Questions and emerging tools to answer them. Front. Plant Sci. 9:1674. 10.3389/fpls.2018.01674 PubMed DOI PMC

Kumar S., Bose B., Pradhan N. (2014). Potassium nitrate priming affects the activity of nitrate reductase and chlorophyll content in late sown sesame (Sesamum indicum L.). Trend. Biosci. 7, 4466–4470.

Kumar S., Hemantaranjan A., Mondal S., Bose B. (2016). Impact of KNO3 Primed seeds on the performance of late sown sesame (Sesamum indicum L.). Int. J. Bio-resource Stress Manag. 7, 950–954. 10.23910/IJBSM/2016.7.4.1418a DOI

Kurepin L. V., Qaderi M. M., Back T. G., Reid D. M., Pharis R. P. (2008). A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Reg. 55, 165–167. 10.1007/s10725-008-9276-5 DOI

Lanna A. C., Jose I. C., Oliveira M. G. A., Baros E. G., Moreira M. A. (2005). Effect of temperature on polyunsaturated fatty acid accumulation in soybean seeds. Braz. J. Plant. Physiol. 17, 213–222. 10.1590/S1677-04202005000200004 PubMed DOI

Li C., Sang S., Sun M., Yang J., Shi Y., Hu X., et al. . (2021a). Direct modification of multiple gene homoeologs in Brassica oleracea and Brassica napus using doubled haploid inducer-mediated genome-editing system. Plant Biotech. J 19:1889. 10.1111/pbi.13632 PubMed DOI PMC

Li J., Nadeem M., Chen L., Wang M., Wan M., Qiu L., et al. . (2020). Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress. J. Proteom. 229:103968. 10.1016/j.jprot.2020.103968 PubMed DOI

Li N., Euring D., Cha J. Y., Lin Z., Lu M., Huang L. J., et al. . (2021b). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 11:e627969. 10.3389/fpls.2020.627969 PubMed DOI PMC

Li P. S., Yu T. F., He G. H., Chen M., Zhou Y. B., Chai S. C., et al. . (2014). Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genom. 15, 1–16. 10.1186/1471-2164-15-1009 PubMed DOI PMC

Li S., Schonhof I., Krumbein A., Li L., Stützel H., Schreiner M. (2007). Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J. Agric. Food Chem. 55, 8452–8457. 10.1021/jf070816k PubMed DOI

Li X. M., Chao D. Y., Wu Y., Huang X., Chen K., Cui L. G., et al. . (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Gene 47, 827–833. 10.1038/ng.3305 PubMed DOI

Liang W., Yang B., Yu B. J., Zhou Z., Li C., Jia M., et al. . (2013). Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genom. 14:392. 10.1186/1471-2164-14-392 PubMed DOI PMC

Liang Y., Sun W., Zhu Y. G., Christie P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Poll. 147, 422–428. 10.1016/j.envpol.2006.06.008 PubMed DOI

Lin K. H., Huang H.-C., Lin C. Y. (2010). Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep. 29, 575–593. 10.1007/s00299-010-0846-4 PubMed DOI

Lin M. Y., Chai K. H., Ko S. S., Kuang L. Y., Lur H. S., Charng Y. Y. (2014). A positive feedback loop between heat shock protein101 and heat stress-associated 32-kd protein modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol. 164, 2045–2053. 10.1104/pp.113.229609 PubMed DOI PMC

Liu H., Bean S., Sun X. S. (2018a). Camelina protein adhesives enhanced by polyelectrolyte interaction for plywood applications. Ind. Crop Prod. 124, 343–352. 10.1016/j.indcrop.2018.07.068 DOI

Liu J., Feng L., Li J., He Z. (2015). Genetic and epigenetic control of plant heat responses. Front. Plant Sci. 6:267. 10.3389/fpls.2015.00267 PubMed DOI PMC

Liu S., Jia Y., Zhu Y., Zhou Y., Shen Y., Wei J., et al. . (2018b). Soybean matrix metalloproteinase Gm2-MMP relates to growth and development and confers enhanced tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Mol. Boil. Rep. 36, 94–106. 10.1007/s11105-017-1065-8 DOI

Liu S., Liu Y., Jia Y., Wei J., Wang S., Liu X., et al. . (2017). Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Sci. 259, 48–61. 10.1016/j.plantsci.2017.03.005 PubMed DOI

Liu W., Yuan J. S., Stewart C. N. (2013). Advanced genetic tools for plant biotechnology. Nat. Rev. Gene 14, 781–793. 10.1038/nrg3583 PubMed DOI

Liu X. Z., Hang B. R. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40, 503–510. 10.2135/cropsci2000.402503x DOI

Ljung K., Nemhauser J. L., Perata P. (2015). New mechanistic links between sugar and hormone signalling networks. Curr. Opin. Plant Biol. 25, 130–137. 10.1016/j.pbi.2015.05.022 PubMed DOI

Lloyd J. P., Seddon A. E., Moghe G. D., Simenc M. C., Shiu S. H. (2015). Characteristics of plant essential genes allow for within- and between-species prediction of lethal mutant phenotypes. Plant Cell 27, 2133–2147. 10.1105/tpc.15.00051 PubMed DOI PMC

Lohani N., Jain D., Singh M. B., Bhalla P. L. (2020). Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front. Plant Sci. 11:3. 10.3389/fpls.2020.00003 PubMed DOI PMC

Lu C., Napier J. A., Clemente T. E., Cahoon E. B. (2011). New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Cur. Opin. Biotech. 22, 252–259. 10.1016/j.copbio.2010.11.006 PubMed DOI

Lwe Z. S. Z., Welti R., Anco D., Naveed S., Rustgi S., Narayanan S. (2020). Heat stress elicits remodeling in the anther lipidome of peanut. Sci. Rep. 10, 1–18. 10.1038/s41598-020-78695-3 PubMed DOI PMC

Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., et al. . (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068. 10.1126/science.1172408 PubMed DOI

Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H. T., Marmiroli N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Bio. 48, 667–681. 10.1023/A:1014826730024 PubMed DOI

Maher M. F., Nasti R. A., Vollbrecht M., Starker C. G., Clark M. D., Voytas D. F. (2020). Plant gene editing through de novo induction of meristems. Nat. Biotech. 38, 84–89. 10.1038/s41587-019-0337-2 PubMed DOI PMC

Majeed S., Malik T. A., Rana I. A., Azhar M. T. (2019). Antioxidant and physiological responses of upland cotton accessions grown under high-temperature regimes. Iran. J. Sci. Tech, Trans. A: Sci. 43, 2759–2768. 10.1007/s40995-019-00781-7 DOI

Majeed S., Rana I. A., Mubarik M. S., Atif R. M., Yang S. H., Chung G., et al. . (2021). Heat stress in cotton: a review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agron 11:1825. 10.3390/agronomy11091825 DOI

Mall T., Han L., Tagliani L., Christensen C. (2018). Transgenic crops: status, potential, and challenges, in Biotechnologies of Crop Improvement, eds Gosal S., Wani S. (Cham: Springer; ). 10.1007/978-3-319-90650-8_16 DOI

Manghwar H., Lindsey K., Zhang X., Jin S. (2019). CRISPR/Cas system: recent advances and future prospects for genome editing. Trend. Plant Sci. 24, 1102–1125. 10.1016/j.tplants.2019.09.006 PubMed DOI

Marioni J. C., Mason C. E., Mane S. M., Stephens M., Gilad Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Gen. Res. 18, 1509–1517. 10.1101/gr.079558.108 PubMed DOI PMC

Meesapyodsuk D., Ye S., Chen Y., Chen Y., Chapman R. G., Qiu X. (2018). An engineered oilseed crop produces oil enriched in two very long chain polyunsaturated fatty acids with potential health-promoting properties. Met. Eng. 49, 192–200. 10.1016/j.ymben.2018.08.009 PubMed DOI

Messaitfa Z. H., Shehata A. I., El Quraini F., Al Hazzani A. A., Rizwana H., El wahabi M. S. (2014). Proteomics analysis of salt stressed Sunflower (Helianthus annuus). Int. J. Pure Appl. Biosci. 2, 6–17.

Mhamdi A., Van Breusegem F. (2018). Reactive oxygen species in plant development. Development 145:164376. 10.1242/dev.164376 PubMed DOI

Mishra R., Joshi R. K., Zhao K. (2020). Base editing in crops: current advances, limitations and future implications. Plant Biotech. J. 18, 20–31. 10.1111/pbi.13225 PubMed DOI PMC

Mittler R., Finka A., Goloubinoff P. (2012). How do plants feel the heat? Trend. Biochem. Sci. 37, 118–125. 10.1016/j.tibs.2011.11.007 PubMed DOI

Miyazono K. I., Miyakawa T., Sawano Y., Kubota K., Kang H. J., Asano A., et al. . (2009). Structural basis of abscisic acid signalling. Nature 462, 609–614. 10.1038/nature08583 PubMed DOI

Mohamed H. I., Abdel-Hamid A. M. E. (2013). Molecular and biochemical studies for heat tolerance on four cotton genotypes. Rom. Biotechnol. Lett. 18, 8823–8831.

Mohammad B. T., Al-Shannag M., Alnaief M., Singh L., Singsaas E., Alkasrawi M. (2018). Production of multiple biofuels from whole camelina material: a renewable energy crop. BioRes 13, 4870–4883.

Mooney B. P., Krishnan H. B., Thelen J. J. (2004). High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. Phytochem 65, 1733–1744. 10.1016/j.phytochem.2004.04.011 PubMed DOI

Morrison M. J., Gutknecht A., Chan J., Miller S. S. (2016). Characterising canola pollen germination across a temperature gradient. Crop Pas. Sci. 67, 317–322. 10.1071/CP15230 PubMed DOI

Muhammad S., Muhammad F. S., Najeeb U., Shafaqat A., Muhammad R., Muhammad R. S. (2019). Role of minerals nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field condition. Sci. Rep. 9:13022. PubMed PMC

Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science 287, 476–479. 10.1126/science.287.5452.476 PubMed DOI

Na G., Aryal N., Fatihi A., Kang J., Lu C. (2018). Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight. Biotechn. Biofuels 11:330. 10.1186/s13068-018-1334-2 PubMed DOI PMC

Nadeem M., Li J., Wang M., Shah L., Lu S., Wang X., et al. . (2018). Unraveling field crops sensitivity to heat stress: Mechanisms, approaches, and future prospects. Agron 8:128. 10.3390/agronomy8070128 DOI

Nandy S., Pathak B., Zhao S., Srivastava V. (2019). Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice. Plant Direct. 3:e00145. 10.1002/pld3.145 PubMed DOI PMC

Natarajan S. S., Xu C., Bae H., Caperna T. J., Garrett W. M. (2006). Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis. J. Agric. Food Chem. 54, 3114–3120. 10.1021/jf052954k PubMed DOI

Nazar R., Iqbal N., Umar S. (2017). Heat stress tolerance in plants: action of salicylic acid. Salicylic Acid 2017:145–161. 10.1007/978-981-10-6068-7_8 DOI

Neale D. B., Savolainen O. (2004). Association genetics of complex traits in conifersi. Trend. Plant Sci. 9, 325–330. 10.1016/j.tplants.2004.05.006 PubMed DOI

NOAA (2017). Available online at: https://www.co2.earth/ (accessed January 1, 2018).

Noctor G., Foyer C. H. (1998). Ascorbate and glutathione: keep active oxygen under control. Ann. Rev. Plant Bio. 49, 249–279. 10.1146/annurev.arplant.49.1.249 PubMed DOI

Nongpiur R. C., Singla-Pareek S. L., Pareek A. (2019). The quest for 'osmosensors' in plants. J. Exp. Bot. 71, 595–607. 10.1093/jxb/erz263 PubMed DOI

Nover L., Baniwal S. K. (2006). Multiplicity of heat stress transcription factors controlling the complex heat stress response of plants, in International Symposium on Environmental Factors, Cellular Stress and Evolution. (Varanasi: ).

O'Brien J. A., Benková E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 4:451. 10.3389/fpls.2013.00451 PubMed DOI PMC

OECD-FAO (2020). Agricultural Outlook 2020-2029. World oilseed projections.

Oh M. W., Nanjo Y., Komatsu S. (2014). Gel free proteomic analysis of soyabean root proteins affected by calcium under flooding stress. Front. Plant Sci. 5:59. 10.3389/fpls.2014.00559 PubMed DOI PMC

Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K. (2017). Transcriptional regulatory network of plant heat stress response. Trend. Plant Sci. 22, 53–65. 10.1016/j.tplants.2016.08.015 PubMed DOI

Pak J. H., Liu C. Y., Huangpu J., Graham J. S. (1997). Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404, 283–288. 10.1016/S0014-5793(97)00141-5 PubMed DOI

Peleg Z., Blumwald E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 14, 290–295. 10.1016/j.pbi.2011.02.001 PubMed DOI

Piramila B. H. M., Prabha A. L., Nandagopalan V., Stanley A. L. (2012). Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int. J. Pharma. Phyt. Res. 1, 194–202.

Pokharel M., Chiluwal A., Stamm M., Min D., Rhodes D., Jagadish S. V. K. (2020). High night-time temperature during flowering and pod filling affects flower opening, yield and seed fatty acid composition in canola. J. Agron. Crop Sci. 206, 579–596. 10.1111/jac.12408 DOI

Ponnampalam E. N., Kerr M. G., Butler K. L., Cottrell J. J., Dunshea F. R., Jacobs J. L. (2019). Filling the out of season gaps for lamb and hogget production: diet and genetic influence on carcass yield, carcass composition and retail value of meat. Meat Sci. 148, 156–163. 10.1016/j.meatsci.2018.08.027 PubMed DOI

Porter J. R., Moot D. J. (1998). Research beyond the means: climatic variability and plant growth, in International Symposiumon Applied Agrometeorology and Agroclimatology, ed Dalezios N. R. (Luxembourg: Office for Official Publication of the European Commission; ).

Prasad P. V. V., Craufurd P. Q., Kakani V. G., Wheeler T. R., Boote K. J. (2001). Influence of high temperature during pre-and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Fun. Plant Bio. 28, 233–240. 10.1071/PP00127 PubMed DOI

Prasad P. V. V., Craufurd P. Q., Summerfield R. J. (1999). Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci. 39, 1352–1357. 10.2135/cropsci1999.3951352x DOI

Prasad P. V. V., Craufurd P. Q., Summerfield R. J., Wheeler T. R. (2000). Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J. Exp. Bot. 51, 777–784. 10.1093/jxb/51.345.777 PubMed DOI

Purty R. S., Kumar G., Singla-Pareek S. L., Pareek A. (2008). Towards salinity tolerance in Brassica: an overview. Physiol. Mol. Biol. Plants 14, 39–49. 10.1007/s12298-008-0004-4 PubMed DOI PMC

Qin J., Gu F., Liu D., Yin C., Zhao S., Chen H., et al. . (2013). Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches. Prot. Sci 11:12. 10.1186/1477-5956-11-12 PubMed DOI PMC

Rad A. H. S., Ganj-Abadi F., Jalili E. O., Eyni-Nargeseh H., Fard N. S. (2021). Zn foliar spray as a management strategy boosts oil qualitative and quantitative traits of spring rapeseed genotypes at winter sowing dates. J. Soil Sci. Plant Nutr. 21, 1610–1620. 10.1007/s42729-021-00465-5 DOI

Radchuk R., Radchuk V., Weschke W., Borisjuk L., Weber H. (2006). Repressing the expression of the sucrose nonfermenting-1-related protein kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid intensive phenotype. Plant Physiol. 140, 263–278. 10.1104/pp.105.071167 PubMed DOI PMC

Rahaman M., Mamidi S., Rahman M. (2018). Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions. Crop J. 6, 115–125. 10.1016/j.cj.2017.08.003 DOI

Rahman H., Xu Y. P., Zhang X. R., Cai X. Z. (2016). Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum. Front. Plant Sci. 7:581. 10.3389/fpls.2016.00581 PubMed DOI PMC

Rahman M. H., Ahmad A., Wajid A., Hussain M., Rasul F., Ishaque W., et al. . (2019). Application of CSM-CROPGRO-cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res. 238, 139–152. 10.1016/j.fcr.2017.07.007 DOI

Rahman M. H., Ahmad A., Wang X., Wajid A., Nasim W., Hussain M., et al. . (2018b). Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric. Forest Meteorol. 253, 94–113. 10.1016/j.agrformet.2018.02.008 DOI

Rahman M. J., de Camargo A. C., Shahidi F. (2018a). Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds. Food Chem. 240, 917–925. 10.1016/j.foodchem.2017.07.098 PubMed DOI

Raman H., Raman R., Nelson M. N., Aslam M. N., Rajasekaran R., Wratten N., et al. . (2012). Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res. 19, 51–65. 10.1093/dnares/dsr041 PubMed DOI PMC

Rani B., Dhawan K., Jain V., Chhabra M. L., Singh D. (2013). High temperature induced changes in antioxidative enzymes in Brassica juncea (L) Czern & Coss. Recuperado el 12.

Ratnaparkhe S. M., Egertsdotter E. U., Flinn B. S. (2009). Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230, 339–354. 10.1007/s00425-009-0949-8 PubMed DOI

Razik A. E. S., Alharbi B. M., Pirzadah T. B., Alnusairi G. S., Soliman M. H., Hakeem K. R. (2021). γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways. Physiol. Plant. 172, 505–527. 10.1111/ppl.13216 PubMed DOI

Rehman A., Atif R. M., Azhar M. T., Peng Z., Li H., Qin G., et al. . (2021). Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int. J. Biol. Macromol. 182, 1507–1527. 10.1016/j.ijbiomac.2021.05.016 PubMed DOI

Ren Z., Zheng Z., Chinnusamy V., Zhu J., Cui X., Iida K., et al. . (2010). RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proceed. Nat. Acad. Sci. U.S.A. 107, 5669–5674. 10.1073/pnas.0910798107 PubMed DOI PMC

Rexroth S., Mullineaux C. W., Sendtko E. D., Rögner M., Koenig F. (2011). The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetics domains. Plant Cell 23, 2379–2390. 10.1105/tpc.111.085779 PubMed DOI PMC

Ribeiro P. R., Fernandez L. G., de Castro R. D., Ligterink W., Hilhorst H. W. (2014). Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol. 14, 1–14. 10.1186/s12870-014-0223-5 PubMed DOI PMC

Ribeiro P. R., Zanotti R. F., Deflers C., Fernandez L. G., de Castro R. D., Ligterink W., et al. . (2015). Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis. Plant Physiol. 185, 31–39. 10.1016/j.jplph.2015.07.005 PubMed DOI

Rivas-San Vicente M., Plasencia J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62, 3321–3338. 10.1093/jxb/err031 PubMed DOI

Rodriguez-Garay B., Barrow J. R. (1988). Pollen selection for heat tolerance in cotton. Crop Sci. 28, 857–859. 10.2135/cropsci1988.0011183X002800050030x DOI

Rodziewicz P., Swarcewicz B., Chmielewska K., Wojakowska A., Stobiecki M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol. Planta 36, 1–19. 10.1007/s11738-013-1402-y DOI

Rondanini D., Savin R., Hall A. J. (2003). Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief intervals of high temperature during grain filling. Field Crops Res. 83, 79–90. 10.1016/S0378-4290(03)00064-9 DOI

Saha D., Mukherjee P., Dutta S., Meena K., Sarkar S. K., Mandal A. B., et al. . (2019). Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci. Rep. 9, 1–18. 10.1038/s41598-019-41936-1 PubMed DOI PMC

Saha D., Shaw A. K., Datta S., Mitra J. (2021). Evolution and functional diversity of abiotic stress-responsive NAC transcription factor genes in Linum usitatissimum L. Environ. Exp. Bot. 188:104512. 10.1016/j.envexpbot.2021.104512 DOI

Sahni S., Prasad B. D., Liu Q., Grbic V., Sharpe A., Singh S. P., et al. . (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci. Rep. 6:28298. 10.1038/srep28298 PubMed DOI PMC

Sahu M. P. (2017). Thiourea: A Potential Bioregulator for Alleviating Abiotic Stresses. Abiotic Stress Manag Res Agric. (Singapore: Springer; ). 10.1007/978-981-10-5744-1_11 DOI

Saidi Y., Finka A., Goloubinoff P. (2011). Heat perception and signalling in plants: a tortuous path to thermos-tolerance. New Phytol. 190, 556–565. 10.1111/j.1469-8137.2010.03571.x PubMed DOI

Saidi Y., Finka A., Muriset M., Bromberg Z., Weiss Y. G., Maathuis F. J. M., et al. . (2009). The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21, 2829–2843. 10.1105/tpc.108.065318 PubMed DOI PMC

Sajid M., Rashid B., Ali Q., Husnain T. (2018). Mechanisms of heat sensing and responses in plants. Biol. Plant. 62, 409–420. 10.1007/s10535-018-0795-2 DOI

Sakamoto T., Kimura S. (2018). Plant temperature sensors. Sensors 18:4365. 10.3390/s18124365 PubMed DOI PMC

Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., et al. . (2010). Auxins reverse plant male sterility caused by high temperatures. Proc. Nat. Acad. Sci. U.S.A. 107, 8569–8574. 10.1073/pnas.1000869107 PubMed DOI PMC

Saleem M. A., Malik W., Qayyum A., Ul-Allah S., Ahmad M. Q., Afzal H., et al. . (2021). Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Mol. Biol. Rep. 48, 1069–1079. 10.1007/s11033-021-06217-z PubMed DOI

Sarwar M., Saleem M. F., Ullah N., Ali S., Rizwan M., Shahid M. R., et al. . (2019). Role of mineral nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field conditions. Sci. Rep. 9, 1–17. 10.1038/s41598-019-49404-6 PubMed DOI PMC

Sarwar M., Saleem M. F., Ullah N., Rizwan M., Ali S., Shahid M. R., et al. . (2018). Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci. Rep. 8, 1–15. 10.1038/s41598-018-35420-5 PubMed DOI PMC

Saxena S. C., Salvi P., Kamble N. U., Joshi P. K., Majee M., Arora S. (2020). Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism. Acta Physiol. Plant. 42:45. 10.1007/s11738-020-3032-5 DOI

Schöffl F., Prandl R., Reindl A. (1999). Molecular responses to heat stress. Mol. Res. 83:93.

Selvaraj M. G., Narayana M., Schubert A. M., Ayers J. L., Baring M. R., Burow M. D. (2009). Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Elec. J. Biotech. 12, 1–10. 10.2225/vol12-issue2-fulltext-13 DOI

Senthil-Kumar M., Srikanthbabu V., Mohan R. B., Shivaprakash N., Udayakumar M. (2003). Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. J. Exp. Bot. 54, 2569–2578. 10.1093/jxb/erg278 PubMed DOI

Shah N., Anwar S., Xu J., Hou Z., Salah A., Khan S., et al. . (2018). The response of transgenic Brassica species to salt stress: a review. Biotech. Let. 40, 1159–1165. 10.1007/s10529-018-2570-z PubMed DOI

Shah S. H., Islam S., Parrey Z. A., Mohammad F. (2021). Role of exogenously applied plant growth regulators in growth and development of edible oilseed crops under variable environmental conditions: a review. J. Soil Sci. Plant Nut. 2021, 1–25. 10.1007/s42729-021-00606-w DOI

Shearman J. R., Jantasuriyarat C., Sangsrakru D., Yoocha T., Vannavichit A., Tragoonrung S., et al. . (2013). Transcriptome analysis of normal and mantled developing oil palm flower and fruit. Genom 101, 306–312. 10.1016/j.ygeno.2013.02.012 PubMed DOI

Shi J., Li R., Qui D., Jiang C., Long Y., Morgan C., et al. . (2009). Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Gene 182, 851–861. 10.1534/genetics.109.101642 PubMed DOI PMC

Shivers S. W., Roberts D. A., McFadden J. P. (2019). Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Rem. Sens. Environ. 222, 215–231. 10.1016/j.rse.2018.12.030 DOI

Shokri-Gharelo R., Noparvar P. M. (2018). Molecular response of canola to salt stress: insights on tolerance mechanisms. PeerJ 6:e4822. 10.7717/peerj.4822 PubMed DOI PMC

Siddique K. H. M., Loss S. P., Regan K. L., Jettner R. L. (1999). Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aus. J. Agric. Res. 50, 375–388. 10.1071/A98096 DOI

Singh B. P., Jayaswal P. K., Singh B., Singh P. K., Kumar V., Mishra S., et al. . (2015). Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep. 34, 993–1004. 10.1007/s00299-015-1760-6 PubMed DOI

Singh K., Singh H., Singh K., Rathore P. (2013). Effect of transplanting and seedling age on growth, yield attributes and seed cotton yield of Bt cotton (Gossypium hirsutum). Ind. J. Agric. Sci. 83, 508–513.

Singh S. K., Reddy V. R., Fleisher D. H., Timlin D. J. (2018). Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis. Front. Plant Sci. 9:1116. 10.3389/fpls.2018.01116 PubMed DOI PMC

Smékalová V., Doskočilová A., Komis G., Šamaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotech. Adv. 32, 2–11. 10.1016/j.biotechadv.2013.07.009 PubMed DOI

Song G., Jia M., Chen K., Kong X., Khattak B., Xie C., et al. . (2016). CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 4, 75–82. 10.1016/j.cj.2015.12.002 DOI

Song Y., Ji D., Li S., Wang P., Li Q., Xiang F. (2012). The dynamic changes of DNA methylation and histone modifcations of salt responsive transcription factor genes in soybean. PLoS ONE 7:e41274. 10.1371/journal.pone.0041274 PubMed DOI PMC

Soon F. F., Ng L. M., Zhou X. E., West G. M., Kovach A., Tan M. E., et al. . (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 85–88. 10.1126/science.1215106 PubMed DOI PMC

Strickler S. R., Bombarely A., Mueller L. A. (2012). Designing a transcriptome next-generation sequencing project for a non-model plant species. Am. J. Bot. 99, 257–266. 10.3732/ajb.1100292 PubMed DOI

Su W., Raza A., Gao A., Jia Z., Zhang Y., Hussain M. A., et al. . (2021). Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under Different hormones and abiotic stress conditions. Antioxd 10:1182. 10.3390/antiox10081182 PubMed DOI PMC

Suárez L., Zarco-Tejada P. J., Sepulcre-Cantó G., Pérez-Priego O., Miller J. R., Jiménez-Muñoz J. C., et al. . (2008). Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remot. Sens. Environ. 112, 560–575. 10.1016/j.rse.2007.05.009 DOI

Subedi U., Jayawardhane K. N., Pan X., Ozga J., Chen G., Foroud N. A., et al. . (2020). The potential of genome editing for improving seed oil content and fatty acid composition in oilseed crops. Lipids 55, 495–512. 10.1002/lipd.12249 PubMed DOI

Sudan J., Raina M., Singh R. (2018). Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8:172. 10.1007/s13205-018-1202-6 PubMed DOI PMC

Sun H., Meng M., Yan Z., Lin Z., Nie X., Yang X. (2019). Genome-wide association mapping of stress-tolerance traits in cotton. Crop J. 7, 77–88. 10.1016/j.cj.2018.11.002 PubMed DOI

Sun Y., Wang C., Yang B., Wu F., Hao X., Liang W., et al. . (2014). Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). J. Exp. Bot. 65, 2171–2188. 10.1093/jxb/eru092 PubMed DOI PMC

Sun Z., Wang Z., Tu J., Zhang J. Z., Yu F., McVetty P. B. E., et al. . (2007). An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theo. Appl. Gene. 114, 1305–1317. 10.1007/s00122-006-0483-z PubMed DOI

Sung D. Y., Kaplan F., Lee K. J., Guy C. L. (2003). Acquired tolerance to temperature extremes. Trend. Plant Sci. 8, 179–187. 10.1016/S1360-1385(03)00047-5 PubMed DOI

Talukder Z. I., Ma G., Hulke B. S., Jan C. C., Qi L. (2019). Linkage mapping and genome-wide association studies of the Rf gene cluster in sunflower (Helianthus annuus L.) and their distribution in world sunflower collections. Front. Gen. 10:216. 10.3389/fgene.2019.00216 PubMed DOI PMC

Tan S. H., Mailer R. J., Blanchard C. L., Agboola S. O. (2011). Extraction and residual anti-nutritional components in protein fractions of Sinapis alba and Brassica napus oil-free meals, in 17th Australian Research Assembly on Brassicas (ARAB).

Tang R., Seguin P., Morrison M. J., Fan S. (2021). Temperature and precipitation at specific growth stages influence soybean tocopherol and lutein concentrations. J. Agron. Crop Sci. 207, 754–767. 10.1111/jac.12470 DOI

Tariq M., Ahmad S., Fahad S., Abbas G., Hussain S., Fatima Z., et al. . (2018). The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agric. For. Met. 256, 270–282. 10.1016/j.agrformet.2018.03.015 DOI

Teixeira E. I., Fischer G., Van Velthuizen H., Walter C., Ewert F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Met. 170, 206–215. 10.1016/j.agrformet.2011.09.002 DOI

Thomas J. M. G., Boote K. J., Allen L. H., Gallo-Meagher M., Davis J. M. (2003). Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 43, 1548–1557. 10.2135/cropsci2003.1548 DOI

Thuzar M., Puteh A. B., Abdullah N. A. P., Lassim M. M., Jusoff K. (2010). The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) Merrill.]. J. Agric. Sci. 2, 172–179. 10.5539/jas.v2n1p172 DOI

Tsukaguchi T., Kawamitsu Y., Takeda H., Suzuki K., Egawa Y. (2003). Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Prod. Sci. 6, 4–27. 10.1626/pps.6.24 DOI

Ulfat M., Athar H. U. R., Khan Z. D., Kalaji H. M. (2020). RNAseq analysis reveals altered expression of key ion transporters causing differential uptake of selective ions in Canola (Brassica napus L.) grown under NaCl stress. Plants 9:891. 10.3390/plants9070891 PubMed DOI PMC

Valantin-Morison M., Meynard J. M. (2008). Diagnosis of limiting factors of organic oilseed rape yield. A survey of farmers' fields. Agron. Sus. Dev. 28, 527–539. 10.1051/agro:2008026 DOI

Valdés-López O., Batek J., Gomez-Hernandez N., Nguyen C. T., Isidra-Arellano M. C., Zhang N., et al. . (2016). Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front. Plant Sci. 7:517. 10.3389/fpls.2016.00517 PubMed DOI PMC

Van der Westhuizen M. M., Oosterhuis D. M., Berner J. M., Boogaers N. (2020). Chlorophyll a fluorescence as an indicator of heat stress in cotton (Gossypium hirsutum L.). South Afric. J. Plant Soil 37, 116–119. 10.1080/02571862.2019.1665721 DOI

Vierling E. (1991). The roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620. 10.1146/annurev.pp.42.060191.003051 DOI

Villanueva-Mejia D., Alvarez J. C. (2017). Genetic improvement of oilseed crops using modern biotechnology. Adv. Seed Biol. 2017, 295–317. 10.5772/intechopen.70743 DOI

Vu L. D., Gevaert K., Smet I. D. (2019). Feeling the heat: searching for plant thermosensors. Trend. Plant Sci. 24, 210–219. 10.1016/j.tplants.2018.11.004 PubMed DOI

Wahid A., Basra S., Farooq M. (2017). Thiourea: a molecule with immense biological significance for plants. Int. J. Agric. Biol. 19:464. 10.17957/IJAB/15.0464 PubMed DOI

Wahid A., Gelani S., Ashraf M., Foolad M. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223. 10.1016/j.envexpbot.2007.05.011 DOI

Wang A., Hu J., Huang X., Li X., Zhou G., Yan Z. (2016a). Comparative transcriptome analysis reveals heat-responsive genes in Chinese cabbage (Brassica rapa ssp. chinensis). Front. Plant Sci. 7:939. 10.3389/fpls.2016.00939 PubMed DOI PMC

Wang D. X., Wang J., Du Y. C., Ma J. Y., Wang S. Y., Tang A. N., et al. . (2020). CRISPR/Cas12a-based dual amplified biosensing system for sensitive and rapid detection of polynucleotide kinase/phosphatase. Biosens. Bioelectron 168:112556. 10.1016/j.bios.2020.112556 PubMed DOI

Wang L., Guo Y., Jia L., Chu H., Zhou S., Chen K., et al. . (2014). Hydrogen peroxide acts upstream of nitric oxide in the heatshock pathway in Arabidopsis seedlings. Plant Physiol. 164, 2184–2196. 10.1104/pp.113.229369 PubMed DOI PMC

Wang L., Ma H., Song L., Shu Y., Gu W. (2012). Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. J. Prot. 75, 2109–2127. 10.1016/j.jprot.2012.01.007 PubMed DOI

Wang L., Xia Q., Zhang Y., Zhu X., Zhu X., Li D. (2016b). Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genom 17:31. 10.1186/s12864-015-2316-4 PubMed DOI PMC

Wang Q. L., Chen J. H., He N. Y., Guo F. Q. (2018a). Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19:849. 10.3390/ijms19030849 PubMed DOI PMC

Wang S., Tao Y., Zhou Y., Niu J., Shu Y., Yu X., et al. . (2017). Translationally controlled tumor protein GmTCTP interacts with GmCDPKSK5 in response to high temperature and humidity stress during soybean seed development. Plant Growth Reg. 82:187. 10.1007/s10725-017-0250-y DOI

Wang W., Zhang H., Wei X., Yang L., Yang B., Zhang L., et al. . (2018b). Functional characterization of calcium-dependent protein kinase (CPK) 2 gene from oilseed rape (Brassica napus L.) in regulating reactive oxygen species signaling and cell death control. Gene 651, 49–56. 10.1016/j.gene.2018.02.006 PubMed DOI

Wang Y., Beaith M., Chalifoux M., Ying J., Uchacz T., Sarvas C., et al. . (2009). Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Mol. Plant 2, 191–200. 10.1093/mp/ssn088 PubMed DOI PMC

Wang Y., Ying J., Kuzma M., Chalifoux M., Sample A., McArthur C., et al. . (2005). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 43, 413–424. 10.1111/j.1365-313X.2005.02463.x PubMed DOI

Wang Y., Zhang L. T., Feng Y. X., Zhang D., Guo S. S., Pang X., et al. . (2019). Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 140:111640. 10.1016/j.indcrop.2019.111640 DOI

Wani S. H., Kumar V. (2020). Heat Stress Tolerance in Plants: Physiological, Molecular and geneTic Perspectives. London: John Wiley & Sons. 10.1002/9781119432401 DOI

Waraich E. A., Ahmad M., Soufan W., Manzoor M. T., Ahmad Z., Habib-Ur-Rahman M., et al. . (2021a). Seed priming with sulfhydral thiourea enhances the performance of Camelina sativa L. under heat stress conditions. Agron 11:1875. 10.3390/agronomy11091875 DOI

Waraich E. A., Ahmad R., Halim A., Aziz T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nut. 12, 221–244. 10.4067/S0718-95162012000200003 DOI

Waraich E. A., Hussain A., Ahmad Z., Ahmad M., Barutçular C. (2021b). Foliar application of sulfur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. J. Plant Nut. 2021, 1–11. 10.1080/01904167.2021.1985138 DOI

Warren G. F. (1998). Spectacular increases in crop yields in the United States in the twentieth century. Weed Technol. 12, 752–760. 10.1017/S0890037X00044663 PubMed DOI

Weckwerth W., Kahl G. (2013). The Handbook of Plant Metabolomics. New York, NY: JohnWiley and Sons. 10.1002/9783527669882 DOI

Wei W., Zhang Y., Lu H., Li D., Wang L., Zhang X. (2013). Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm. J. Integ. Plant Bio. 55, 745–758. 10.1111/jipb.12049 PubMed DOI

Wilson R. A., Sangha M. K., Banga S. S., Atwal A. K., Gupta S. (2014). Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J. Environ. Bio. 35:383. PubMed

Wise R., Olson A., Schrader S., Sharkey T. (2004). Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell Environ. 27, 717–724. 10.1111/j.1365-3040.2004.01171.x DOI

Woo J. W., Kim J., Kwon S. I., Corvalán C., Cho S. W., Kim H., et al. . (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotech. 33, 1162–1164. 10.1038/nbt.3389 PubMed DOI

Wu Y. W., Ke Y. Z., Wen J., Guo P. C., Ran F., Wang M. M., et al. . (2018). Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS ONE 13:e0200762. 10.1371/journal.pone.0200762 PubMed DOI PMC

Xi X. Y. (1991). Development and structure of pollen and embryo sac in peanut (Arachis hypogaea L.). Bot. Gazette 152, 164–172. 10.1086/337876 DOI

Xia Z., Tsubokura Y., Hoshi M., Hanawa M., Yano C., Okamura K., et al. . (2007). An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res. 14, 257–269. 10.1093/dnares/dsm027 PubMed DOI PMC

Xiao-Ping Z., Fang H., Yan-Bin H., Hai-Yan L., Er-Hua Z., Gui-Yuan Z., et al. . (2011). Analysis of gene expression profiles in pod and leaf of two major peanut cultivars in Southern China. Acta Agron. Sin. 37, 1378–1388. 10.3724/SP.J.1006.2011.01378 DOI

Xu G., Singh S., Barnaby J., Buyer J., Reddy V., Sicher R. (2016). Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stages of development. Plant Physiol. Biochem. 108, 313–322. 10.1016/j.plaphy.2016.07.025 PubMed DOI

Xuan N., Jin Y., Zhang H., Xie Y., Liu Y., Wang G. (2011). A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell. Tiss. Organ Cult. 107, 101–112. 10.1007/s11240-011-9962-2 DOI

Yang H., Wu J. J., Tang T., Liu K. D., Dai C. (2017). CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci. Rep. 7, 1–13. 10.1038/s41598-017-07871-9 PubMed DOI PMC

Yang K. A., Lim C. J., Hong J. K., Park C. Y., Cheong Y. H., Chung W. S., et al. . (2006). Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171, 175–182. 10.1016/j.plantsci.2006.03.013 DOI

Yang S., Wang F., Guo F., Meng J. J., Li X. G., Dong S. T., et al. . (2013). Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS ONE 8:e71214. 10.1371/journal.pone.0071214 PubMed DOI PMC

Young L. W., Wilen R. W., Bonham-Smith P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495. 10.1093/jxb/erh038 PubMed DOI

Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., et al. . (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371. 10.1038/nature13593 PubMed DOI

Yuan L., Wang J., Xie S., Zhao M., Nie L., Zheng Y., et al. . (2019). Comparative proteomics indicates that redox homeostasis is involved in high-and low-temperature stress tolerance in a novel Wucai (Brassica campestris L.) genotype. Int. J. Mol. Sci. 20:3760. 10.3390/ijms20153760 PubMed DOI PMC

Zandalinas S. I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162, 2–12. 10.1111/ppl.12540 PubMed DOI

Zargar S. M., Gupta N., Nazir M., Mir R. A., Gupta S. K., Agrawal G. K., et al. . (2016). Omics-a new approach to sustainable production, in Breeding Oilseed Crops for Sustainable Production (Academic Press: ). 10.1016/B978-0-12-801309-0.00013-6 DOI

Zargar S. T., Joshi J., Tipper D. (2013). A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15, 2046–2069. 10.1109/SURV.2013.031413.00127 PubMed DOI

Zhang H., Lang Z., Zhu J. K. (2018). Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506. 10.1038/s41580-018-0016-z PubMed DOI

Zhang X. Z., Zheng W. J., Cao X. Y., Cui X. Y., Zhao S. P., Yu T. F., et al. . (2019). Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Front. Plant Sci. 10:1453. 10.3389/fpls.2019.01453 PubMed DOI PMC

Zhao C. Z., Zhao S. Z., Hou L., Xia H., Wang J. S., Li C. S., et al. . (2015). Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Bio. 15:188. 10.1186/s12870-015-0582-6 PubMed DOI PMC

Zhou B., Zhang L., Ullah A., Jin X., Yang X., Zhang X. (2016). Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS ONE 11:e0152927. 10.1371/journal.pone.0152927 PubMed DOI PMC

Zhu J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273. 10.1146/annurev.arplant.53.091401.143329 PubMed DOI PMC

Zhu X., Huang C., Zhang L., Liu H., Yu J., Hu Z., et al. . (2017). Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses. Front. Plant Sci. 8:1174. 10.3389/fpls.2017.01174 PubMed DOI PMC

Zhu X., Wang Y., Liu Y., Zhou W., Yan B., Yang J., et al. . (2018). Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS ONE 13:e0207277. 10.1371/journal.pone.0207277 PubMed DOI PMC

Ziegler G., Terauchi A., Becker A., Armstrong P., Hudson K., Baxter I. (2013). Ionomic screening of field-grown soyabean identifies mutants with altered seed elemental composition. Plant Genom. 6:12. 10.3835/plantgenome2012.07.0012 DOI

Zou J. J., Li X. D., Ratnasekera D., Wang C., Liu W. X., Song L. F., et al. . (2015). Arabidopsis calcium-dependent protein kinase8 and catalase3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27, 1445–1460. 10.1105/tpc.15.00144 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...