Immune activation of the monocyte-derived dendritic cells using patients own circulating tumor cells

. 2022 Dec ; 71 (12) : 2901-2911. [epub] 20220426

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35471603

Grantová podpora
IGA-KZ-2017-1-16 KZ

Odkazy

PubMed 35471603
PubMed Central PMC10992224
DOI 10.1007/s00262-022-03189-2
PII: 10.1007/s00262-022-03189-2
Knihovny.cz E-zdroje

BACKGROUND: Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS: DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS: New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION: Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.

Zobrazit více v PubMed

Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20. doi: 10.1111/imm.12888. PubMed DOI PMC

Cancel J-C, Crozat K, Dalod M, Mattiuz R. Are conventional type 1 dendritic cells critical for protective antitumor Immunity and How? Front Immunol. 2019;10(19):9–9. doi: 10.1038/s41467-019-13368-y. PubMed DOI PMC

Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89–103. doi: 10.1038/s41577-018-0088-1.ISSN1474-1733. PubMed DOI PMC

Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol. 2012;8(10):1273–1299. doi: 10.2217/fon.12.125. PubMed DOI PMC

Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3. doi: 10.1186/s40164-022-00257-2. PubMed DOI PMC

PantelSpeicher KMR. The biology of circulating tumor cells. Oncogene. 2016;35(10):1216–1224. doi: 10.1038/onc.2015.192.ISSN0950-9232. PubMed DOI

Kolostova K, Zhang Y, Hoffman RM, Bobek V. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nude-mouse model expressing fluorescent protein. J Fluorescence. 2014;24(5):1531–1536. doi: 10.1007/s10895-014-1439-3. PubMed DOI PMC

Kolostova K, Matkowski R, Jędryka M, et al. The added value of circulating tumor cells examination in ovarian cancer staging. Am J Cancer Res. 2015;5(11):3363–3375. PubMed PMC

Nath SC, Harper L, Rancourt DE. Cell-based therapy manufacturing in stirred suspension bioreactor: thoughts for cGMP compliance. Front Bioeng Biotechnol. 2020;8(8):1–16. doi: 10.3389/fbioe.2020.599674. PubMed DOI PMC

Hopewell EL, Cox C. Manufacturing dendritic cells for immunotherapy: monocyte enrichment. Mol Ther Methods Clin Dev. 2020;16(1):155–160. doi: 10.1016/j.omtm.2019.12.017. PubMed DOI PMC

Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):1–10. doi: 10.1038/s41467-019-13368-y. PubMed DOI PMC

Silvestris N, Ciliberto G, De Paoli P, Apolone G, Lavitrano ML, Pierotti MA, Stanta G. Liquid dynamic medicine and N-of-1 clinical trials a change of perspective in oncology research. J Exp Clin Cancer Res. 2017;36(1):5. doi: 10.1186/s13046-017-0598-x. PubMed DOI PMC

Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–424. doi: 10.1038/s41571-019-0187-3. PubMed DOI

Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Investig. 2002;109(3):409–417. doi: 10.1172/JCI14364. PubMed DOI PMC

Saxena M, Balan S, Roudko V, Bhardwaj N. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng. 2018;2(6):341–346. doi: 10.1038/s41551-018-0250-x. PubMed DOI PMC

Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000;165(10):5713–5719. doi: 10.4049/jimmunol.165.10.5713. PubMed DOI

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z. PubMed DOI

Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell–based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res. 2016;168:74–95. doi: 10.1016/j.trsl.2015.07.008. PubMed DOI

Amberger DC, Schmetzer HM. Dendritic cells of leukemic origin: specialized antigen-presenting cells as potential treatment tools for patients with Myeloid Leukemia. Transfus Med Hemother. 2020;47(6):432–443. doi: 10.1159/000512452. PubMed DOI PMC

Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of Cell Death. J Exp Med. 2000;191(3):423–434. doi: 10.1084/jem.191.3.423. PubMed DOI PMC

Podrazil M, Horvath R, Becht E, et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–18205. doi: 10.18632/oncotarget.4145. PubMed DOI PMC

Oh SA, Wu DC, Cheung J. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat Cancer. 2020;1(1):681–691. doi: 10.1038/s43018-020-0075-x. PubMed DOI

Morita M, Gravel S-P, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. MTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473–480. doi: 10.4161/15384101.2014.991572. PubMed DOI PMC

Szatmari I, Töröcsik D, Agostini M, Nagy T, Gurnell M, Barta E, Chatterjee K, Nagy L. PPARγ regulates the function of human dendritic cells primarily by altering lipid metabolism. Blood. 2007;110(9):3271–3280. doi: 10.1182/blood-2007-06-096222. PubMed DOI

Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15(1):18–29. doi: 10.1038/nri3771. PubMed DOI PMC

Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–4749. doi: 10.1182/blood-2009-10-249540. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...