The evolution of organic material on Asteroid 162173 Ryugu and its delivery to Earth

. 2024 Jul 22 ; 15 (1) : 6165. [epub] 20240722

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39039074
Odkazy

PubMed 39039074
PubMed Central PMC11263614
DOI 10.1038/s41467-024-50004-w
PII: 10.1038/s41467-024-50004-w
Knihovny.cz E-zdroje

The recent return of samples from asteroid 162173 Ryugu provides a first insight into early Solar System prebiotic evolution from known planetary bodies. Ryugu's samples are CI chondrite-like, rich in water and organic material, and primarily composed of phyllosilicate. This phyllosilicate surrounds micron to submicron macromolecular organic particles known as insoluble organic matter. Using advanced microscopy techniques on Hayabusa-2 samples, we find that aqueous alteration on Ryugu produced organic particles richer in aromatics compared to less altered carbonaceous chondrites. This challenges the view that aromatic-rich organic matter formed pre-accretion. Additionally, widespread diffuse organic material occurs in phyllosilicate more aliphatic-, carboxylic-rich, and aromatic-poor than the discrete organic particles, likely preserving the soluble organic material. Some organic particles evolved to encapsulate phyllosilicate, indicating that aqueous alteration on Ryugu led to the containment of soluble organic matter within these particles. Earth therefore has been, and continues to be, delivered micron-sized polymeric organic objects containing biologically relevant molecules.

Zobrazit více v PubMed

Oro J., Lazcano A., Ehrenfreund P. Comets and the origin and evolution of life. In: Comets and the Origin and Evolution of Life. Springer (2006).

Pizzarello, S. The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc. Chem. Res.39, 231–237 (2006). 10.1021/ar050049f PubMed DOI

Cruikshank, D. et al. Prebiotic chemistry of Pluto. Astrobiology19, 831–848 (2019). 10.1089/ast.2018.1927 PubMed DOI

Raulin, F., Brassé, C., Poch, O. & Coll, P. Prebiotic-like chemistry on Titan. Chem. Soc. Rev.41, 5380–5393 (2012). 10.1039/c2cs35014a PubMed DOI

Krot, A. et al. Origin and chronology of chondritic components: a review. Geochimica et. Cosmochimica Acta73, 4963–4997 (2009).10.1016/j.gca.2008.09.039 DOI

Osinski, G., Cockell, C., Pontefract, A. & Sapers, H. The role of meteorite impacts in the origin of life. Astrobiology20, 1121–1149 (2020). 10.1089/ast.2019.2203 PubMed DOI PMC

Lauretta, D. et al. The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci.50, 834–849 (2015).10.1111/maps.12353 DOI

Yada, T. et al. Ryugu: A brand-new planetary sample returned from a C-type asteroid. Nat. Astron.6, 214–220 (2022).10.1038/s41550-021-01550-6 DOI

McSween, H. Y. Jr. Are carbonaceous chondrites primitive or processed? A review. Rev. Geophys.17, 1059–1078 (1979).10.1029/RG017i005p01059 DOI

Russell, S. S., Suttle, M. & King, A. Abundance and importance of petrological type 1 chondritic material. Meteorit. Planet. Sci.57, 277–301 (2022).10.1111/maps.13753 DOI

Yokoyama, T. et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science379, eabn7850 (2022).10.1126/science.abn7850 PubMed DOI

Greenwood, R. C. et al. Oxygen isotope evidence from Ryugu samples for early water delivery to Earth by CI chondrites. Nat. Astron.7, 29–38 (2023).10.1038/s41550-022-01824-7 DOI

Michel, P. et al. Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu. Nat. Commun.11, 2655 (2020). 10.1038/s41467-020-16433-z PubMed DOI PMC

Glavin D. P. et al. The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies. In: Primitive meteorites and asteroids). Elsevier (2018).

Sephton, M. A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep.19, 292–311 (2002). 10.1039/b103775g PubMed DOI

Pizzarello, S., Cooper, G. & Flynn, G. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteor. Early Sol. Syst. II1, 625–651 (2006).

Alexander, C. O. D., Fogel, M., Yabuta, H. & Cody, G. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et. Cosmochimica Acta71, 4380–4403 (2007).10.1016/j.gca.2007.06.052 DOI

Le Guillou, C., Bernard, S., Brearley, A. J. & Remusat, L. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et. Cosmochimica Acta131, 368–392 (2014).10.1016/j.gca.2013.11.020 DOI

Changela, H. G., Le Guillou, C., Bernard, S. & Brearley, A. J. Hydrothermal evolution of the morphology, molecular composition, and distribution of organic matter in CR (Renazzo‐type) chondrites. Meteorit. Planet. Sci.53, 1006–1029 (2018).10.1111/maps.13045 DOI

Naraoka, H. et al. A chemical sequence of macromolecular organic matter in the CM chondrites. Meteorit. Planet. Sci.39, 401–406 (2004).10.1111/j.1945-5100.2004.tb00101.x DOI

Cody, G. D. & Alexander, C. M. D. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et. Cosmochimica Acta69, 1085–1097 (2005).10.1016/j.gca.2004.08.031 DOI

Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science314, 1439–1442 (2006). 10.1126/science.1132175 PubMed DOI

Changela, H. G. Morphological study of Insoluble Organic Matter from carbonaceous chondrites: Correlation with petrologic grade. Geochimica et. Cosmochimica Acta159, 285–297 (2015).10.1016/j.gca.2015.02.007 DOI

De Gregorio, B. T. et al. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteorit. Planet. Sci.48, 904–928 (2013).10.1111/maps.12109 DOI

Yabuta, H. et al. Macromolecular organic matter in samples of the asteroid (162173). Ryugu. Sci.379, eabn9057 (2023).10.1126/science.abn9057 PubMed DOI

Alexander, C. O. D., Cody, G., De Gregorio, B., Nittler, L. & Stroud, R. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Geochemistry77, 227–256 (2017).10.1016/j.chemer.2017.01.007 PubMed DOI PMC

Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science312, 727–730 (2006). 10.1126/science.1123878 PubMed DOI

Kebukawa, Y., Kilcoyne, A. D. & Cody, G. D. Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophysical. J.771, 19 (2013).10.1088/0004-637X/771/1/19 DOI

Kerridge, J. F. Origins of organic matter in meteorites. Antarct. Meteor. Res.6, 293 (1993).

Gilmour, I. Structural and isotopic analysis of organic matter in carbonaceous chondrites. Treatise Geochem.1, 711 (2003).

Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science379, eabn9033 (2023). 10.1126/science.abn9033 PubMed DOI

Potiszil, C. et al. Insights into the formation and evolution of extraterrestrial amino acids from the asteroid Ryugu. Nat. Commun.14, 1482 (2023). 10.1038/s41467-023-37107-6 PubMed DOI PMC

Kebukawa Y. et al. Infrared absorption spectra from organic matter in the asteroid Ryugu samples: Some unique properties compared to unheated carbonaceous chondrites. Meteor. Planet. Sci., (2023).

Dionnet Z. et al. Three‐dimensional multiscale assembly of phyllosilicates, organics, and carbonates in small Ryugu fragments. Meteor. Planet. Sci., (2023).

Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples. Science379, eabn8671 (2022).10.1126/science.abn8671 PubMed DOI

Penfold, N. J., Yeow, J., Boyer, C. & Armes, S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett.8, 1029–1054 (2019). 10.1021/acsmacrolett.9b00464 PubMed DOI

Ito, M. et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample. Nat. Astron.6, 1163–1171 (2022).

Binzel, R. et al. Compositional distributions and evolutionary processes for the near-Earth object population: results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus324, 41–76 (2019).10.1016/j.icarus.2018.12.035 DOI

Nakashima, D. et al. Chondrule-like objects and Ca-Al-rich inclusions in Ryugu may potentially be the oldest Solar System materials. Nat. Commun.14, 532 (2023). 10.1038/s41467-023-36268-8 PubMed DOI PMC

Kawasaki, N. et al. Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2. Sci. Adv.8, eade2067 (2022). 10.1126/sciadv.ade2067 PubMed DOI PMC

Liu, M. C. et al. Incorporation of 16O-rich anhydrous silicates in the protolith of highly hydrated asteroid Ryugu. Nat. Astron.6, 1172–1177 (2022).10.1038/s41550-022-01762-4 DOI

Zandanel, A. et al. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nat. Astron.6, 554–559 (2022).10.1038/s41550-022-01613-2 DOI

Potiszil, C. et al. Organic matter in the asteroid Ryugu: what we know so far. Life13, 1448 (2023). 10.3390/life13071448 PubMed DOI PMC

McCain, K. A. et al. Early fluid activity on Ryugu inferred by isotopic analyses of carbonates and magnetite. Nat. Astron.7, 309–317 (2023).10.1038/s41550-022-01863-0 DOI

Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochimica et. Cosmochimica acta53, 197–214 (1989).10.1016/0016-7037(89)90286-X DOI

Bernard, S. & Horsfield, B. Thermal maturation of gas shale systems. Annu. Rev. Earth Planet. Sci.42, 635–651 (2014).10.1146/annurev-earth-060313-054850 DOI

Changela H., Le Guillou C., Brearley A. Analytical constraints on the formation and evolution of organic material by processes on primitive chondrite parent bodies. In: Lunar and Planetary Science Conference (2015).

Kebukawa, Y. et al. A novel organic-rich meteoritic clast from the outer solar system. Sci. Rep.9, 1–8 (2019). 10.1038/s41598-019-39357-1 PubMed DOI PMC

Chan, Q. H. et al. Organic matter in extraterrestrial water-bearing salt crystals. Sci. Adv.4, eaao3521 (2018). 10.1126/sciadv.aao3521 PubMed DOI PMC

King, A. J., Phillips, K., Strekopytov, S., Vita-Finzi, C. & Russell, S. S. Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen. Geochimica et. Cosmochimica Acta268, 73–89 (2020).10.1016/j.gca.2019.09.041 DOI

Brearley A. The action of water In Meteorites and the Early Solar System II. University of Arizona Press, Tucson, AZ (2006).

Le Guillou, C. & Brearley, A. Relationships between organics, water and early stages of aqueous alteration in the pristine CR3. 0 chondrite MET 00426. Geochimica et. Cosmochimica Acta131, 344–367 (2014).10.1016/j.gca.2013.10.024 DOI

Vinogradoff, V. et al. Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: Experimental perspectives. Geochimica et. Cosmochimica Acta269, 150–166 (2020).10.1016/j.gca.2019.10.029 DOI

Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ.2, 402–421 (2021).10.1038/s43017-021-00162-y DOI

Rojas, J. et al. The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth Planet. Sci. Lett.560, 116794 (2021).10.1016/j.epsl.2021.116794 DOI

Chyba C., Sagan C. Comets as a source of prebiotic organic molecules for the early Earth. In: Comets and the Origin and Evolution of Life). Springer (1997).

Anslow, R. J., Bonsor, A. & Rimmer, P. B. Can comets deliver prebiotic molecules to rocky exoplanets? Proc. R. Soc. A479, 20230434 (2023).10.1098/rspa.2023.0434 DOI

Ferus, M. et al. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci.114, 4306–4311 (2017). 10.1073/pnas.1700010114 PubMed DOI PMC

Noguchi, T. et al. An another protocol to make sulfur embedded ultrathin sections of extraterrestrial small samples. Life10, 135 (2020). 10.3390/life10080135 PubMed DOI PMC

Bassim, N. et al. Minimizing damage during FIB sample preparation of soft materials. J. Microsc.245, 288–301 (2012).10.1111/j.1365-2818.2011.03570.x DOI

Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol.14, e1002340 (2016). 10.1371/journal.pbio.1002340 PubMed DOI PMC

Hitchcock, A. P. Analysis of X-ray images and spectra (aXis2000): A toolkit for the analysis of X-ray spectromicroscopy data. J. Electron Spectrosc. Relat. Phenom.266, 147360 (2023).10.1016/j.elspec.2023.147360 DOI

Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat.12, 537–541 (2005). 10.1107/S0909049505012719 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...