The evolution of organic material on Asteroid 162173 Ryugu and its delivery to Earth
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39039074
PubMed Central
PMC11263614
DOI
10.1038/s41467-024-50004-w
PII: 10.1038/s41467-024-50004-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The recent return of samples from asteroid 162173 Ryugu provides a first insight into early Solar System prebiotic evolution from known planetary bodies. Ryugu's samples are CI chondrite-like, rich in water and organic material, and primarily composed of phyllosilicate. This phyllosilicate surrounds micron to submicron macromolecular organic particles known as insoluble organic matter. Using advanced microscopy techniques on Hayabusa-2 samples, we find that aqueous alteration on Ryugu produced organic particles richer in aromatics compared to less altered carbonaceous chondrites. This challenges the view that aromatic-rich organic matter formed pre-accretion. Additionally, widespread diffuse organic material occurs in phyllosilicate more aliphatic-, carboxylic-rich, and aromatic-poor than the discrete organic particles, likely preserving the soluble organic material. Some organic particles evolved to encapsulate phyllosilicate, indicating that aqueous alteration on Ryugu led to the containment of soluble organic matter within these particles. Earth therefore has been, and continues to be, delivered micron-sized polymeric organic objects containing biologically relevant molecules.
Central European Institute of Technology Brno University of Technology Brno Czechia
Central European Institute of Technology Masaryk University Brno Czechia
Department of Chemistry and Biochemistry Mendel University Brno Czechia
Department of Chemistry and Life Science Yokohama National University Yokohama Japan
Department of Earth and Planetary Science The University of Tokyo Tokyo Japan
Department of Earth and Planetary Sciences Tokyo Institute of Technology Tokyo Japan
Department of Earth and Planetary Sciences University of New Mexico Albuquerque NM USA
Department of Inorganic Chemistry Faculty of Science Charles University Prague Czechia
ESTEC European Space Agency Noordwijk The Netherlands
Institute of Materials Structure Science High Energy Accelerator Research Organization Ibaraki Japan
School of Mining and Metallurgical Engineering National Technical University of Athens Athens Greece
Space Park Leicester School of Physics and Astronomy University of Leicester Leicester UK
Zobrazit více v PubMed
Oro J., Lazcano A., Ehrenfreund P. Comets and the origin and evolution of life. In: Comets and the Origin and Evolution of Life. Springer (2006).
Pizzarello, S. The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc. Chem. Res.39, 231–237 (2006). 10.1021/ar050049f PubMed DOI
Cruikshank, D. et al. Prebiotic chemistry of Pluto. Astrobiology19, 831–848 (2019). 10.1089/ast.2018.1927 PubMed DOI
Raulin, F., Brassé, C., Poch, O. & Coll, P. Prebiotic-like chemistry on Titan. Chem. Soc. Rev.41, 5380–5393 (2012). 10.1039/c2cs35014a PubMed DOI
Krot, A. et al. Origin and chronology of chondritic components: a review. Geochimica et. Cosmochimica Acta73, 4963–4997 (2009).10.1016/j.gca.2008.09.039 DOI
Osinski, G., Cockell, C., Pontefract, A. & Sapers, H. The role of meteorite impacts in the origin of life. Astrobiology20, 1121–1149 (2020). 10.1089/ast.2019.2203 PubMed DOI PMC
Lauretta, D. et al. The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci.50, 834–849 (2015).10.1111/maps.12353 DOI
Yada, T. et al. Ryugu: A brand-new planetary sample returned from a C-type asteroid. Nat. Astron.6, 214–220 (2022).10.1038/s41550-021-01550-6 DOI
McSween, H. Y. Jr. Are carbonaceous chondrites primitive or processed? A review. Rev. Geophys.17, 1059–1078 (1979).10.1029/RG017i005p01059 DOI
Russell, S. S., Suttle, M. & King, A. Abundance and importance of petrological type 1 chondritic material. Meteorit. Planet. Sci.57, 277–301 (2022).10.1111/maps.13753 DOI
Yokoyama, T. et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science379, eabn7850 (2022).10.1126/science.abn7850 PubMed DOI
Greenwood, R. C. et al. Oxygen isotope evidence from Ryugu samples for early water delivery to Earth by CI chondrites. Nat. Astron.7, 29–38 (2023).10.1038/s41550-022-01824-7 DOI
Michel, P. et al. Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu. Nat. Commun.11, 2655 (2020). 10.1038/s41467-020-16433-z PubMed DOI PMC
Glavin D. P. et al. The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies. In: Primitive meteorites and asteroids). Elsevier (2018).
Sephton, M. A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep.19, 292–311 (2002). 10.1039/b103775g PubMed DOI
Pizzarello, S., Cooper, G. & Flynn, G. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteor. Early Sol. Syst. II1, 625–651 (2006).
Alexander, C. O. D., Fogel, M., Yabuta, H. & Cody, G. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochimica et. Cosmochimica Acta71, 4380–4403 (2007).10.1016/j.gca.2007.06.052 DOI
Le Guillou, C., Bernard, S., Brearley, A. J. & Remusat, L. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et. Cosmochimica Acta131, 368–392 (2014).10.1016/j.gca.2013.11.020 DOI
Changela, H. G., Le Guillou, C., Bernard, S. & Brearley, A. J. Hydrothermal evolution of the morphology, molecular composition, and distribution of organic matter in CR (Renazzo‐type) chondrites. Meteorit. Planet. Sci.53, 1006–1029 (2018).10.1111/maps.13045 DOI
Naraoka, H. et al. A chemical sequence of macromolecular organic matter in the CM chondrites. Meteorit. Planet. Sci.39, 401–406 (2004).10.1111/j.1945-5100.2004.tb00101.x DOI
Cody, G. D. & Alexander, C. M. D. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et. Cosmochimica Acta69, 1085–1097 (2005).10.1016/j.gca.2004.08.031 DOI
Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science314, 1439–1442 (2006). 10.1126/science.1132175 PubMed DOI
Changela, H. G. Morphological study of Insoluble Organic Matter from carbonaceous chondrites: Correlation with petrologic grade. Geochimica et. Cosmochimica Acta159, 285–297 (2015).10.1016/j.gca.2015.02.007 DOI
De Gregorio, B. T. et al. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteorit. Planet. Sci.48, 904–928 (2013).10.1111/maps.12109 DOI
Yabuta, H. et al. Macromolecular organic matter in samples of the asteroid (162173). Ryugu. Sci.379, eabn9057 (2023).10.1126/science.abn9057 PubMed DOI
Alexander, C. O. D., Cody, G., De Gregorio, B., Nittler, L. & Stroud, R. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Geochemistry77, 227–256 (2017).10.1016/j.chemer.2017.01.007 PubMed DOI PMC
Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science312, 727–730 (2006). 10.1126/science.1123878 PubMed DOI
Kebukawa, Y., Kilcoyne, A. D. & Cody, G. D. Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophysical. J.771, 19 (2013).10.1088/0004-637X/771/1/19 DOI
Kerridge, J. F. Origins of organic matter in meteorites. Antarct. Meteor. Res.6, 293 (1993).
Gilmour, I. Structural and isotopic analysis of organic matter in carbonaceous chondrites. Treatise Geochem.1, 711 (2003).
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science379, eabn9033 (2023). 10.1126/science.abn9033 PubMed DOI
Potiszil, C. et al. Insights into the formation and evolution of extraterrestrial amino acids from the asteroid Ryugu. Nat. Commun.14, 1482 (2023). 10.1038/s41467-023-37107-6 PubMed DOI PMC
Kebukawa Y. et al. Infrared absorption spectra from organic matter in the asteroid Ryugu samples: Some unique properties compared to unheated carbonaceous chondrites. Meteor. Planet. Sci., (2023).
Dionnet Z. et al. Three‐dimensional multiscale assembly of phyllosilicates, organics, and carbonates in small Ryugu fragments. Meteor. Planet. Sci., (2023).
Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples. Science379, eabn8671 (2022).10.1126/science.abn8671 PubMed DOI
Penfold, N. J., Yeow, J., Boyer, C. & Armes, S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett.8, 1029–1054 (2019). 10.1021/acsmacrolett.9b00464 PubMed DOI
Ito, M. et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample. Nat. Astron.6, 1163–1171 (2022).
Binzel, R. et al. Compositional distributions and evolutionary processes for the near-Earth object population: results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus324, 41–76 (2019).10.1016/j.icarus.2018.12.035 DOI
Nakashima, D. et al. Chondrule-like objects and Ca-Al-rich inclusions in Ryugu may potentially be the oldest Solar System materials. Nat. Commun.14, 532 (2023). 10.1038/s41467-023-36268-8 PubMed DOI PMC
Kawasaki, N. et al. Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2. Sci. Adv.8, eade2067 (2022). 10.1126/sciadv.ade2067 PubMed DOI PMC
Liu, M. C. et al. Incorporation of 16O-rich anhydrous silicates in the protolith of highly hydrated asteroid Ryugu. Nat. Astron.6, 1172–1177 (2022).10.1038/s41550-022-01762-4 DOI
Zandanel, A. et al. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nat. Astron.6, 554–559 (2022).10.1038/s41550-022-01613-2 DOI
Potiszil, C. et al. Organic matter in the asteroid Ryugu: what we know so far. Life13, 1448 (2023). 10.3390/life13071448 PubMed DOI PMC
McCain, K. A. et al. Early fluid activity on Ryugu inferred by isotopic analyses of carbonates and magnetite. Nat. Astron.7, 309–317 (2023).10.1038/s41550-022-01863-0 DOI
Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochimica et. Cosmochimica acta53, 197–214 (1989).10.1016/0016-7037(89)90286-X DOI
Bernard, S. & Horsfield, B. Thermal maturation of gas shale systems. Annu. Rev. Earth Planet. Sci.42, 635–651 (2014).10.1146/annurev-earth-060313-054850 DOI
Changela H., Le Guillou C., Brearley A. Analytical constraints on the formation and evolution of organic material by processes on primitive chondrite parent bodies. In: Lunar and Planetary Science Conference (2015).
Kebukawa, Y. et al. A novel organic-rich meteoritic clast from the outer solar system. Sci. Rep.9, 1–8 (2019). 10.1038/s41598-019-39357-1 PubMed DOI PMC
Chan, Q. H. et al. Organic matter in extraterrestrial water-bearing salt crystals. Sci. Adv.4, eaao3521 (2018). 10.1126/sciadv.aao3521 PubMed DOI PMC
King, A. J., Phillips, K., Strekopytov, S., Vita-Finzi, C. & Russell, S. S. Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen. Geochimica et. Cosmochimica Acta268, 73–89 (2020).10.1016/j.gca.2019.09.041 DOI
Brearley A. The action of water In Meteorites and the Early Solar System II. University of Arizona Press, Tucson, AZ (2006).
Le Guillou, C. & Brearley, A. Relationships between organics, water and early stages of aqueous alteration in the pristine CR3. 0 chondrite MET 00426. Geochimica et. Cosmochimica Acta131, 344–367 (2014).10.1016/j.gca.2013.10.024 DOI
Vinogradoff, V. et al. Influence of phyllosilicates on the hydrothermal alteration of organic matter in asteroids: Experimental perspectives. Geochimica et. Cosmochimica Acta269, 150–166 (2020).10.1016/j.gca.2019.10.029 DOI
Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ.2, 402–421 (2021).10.1038/s43017-021-00162-y DOI
Rojas, J. et al. The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth Planet. Sci. Lett.560, 116794 (2021).10.1016/j.epsl.2021.116794 DOI
Chyba C., Sagan C. Comets as a source of prebiotic organic molecules for the early Earth. In: Comets and the Origin and Evolution of Life). Springer (1997).
Anslow, R. J., Bonsor, A. & Rimmer, P. B. Can comets deliver prebiotic molecules to rocky exoplanets? Proc. R. Soc. A479, 20230434 (2023).10.1098/rspa.2023.0434 DOI
Ferus, M. et al. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci.114, 4306–4311 (2017). 10.1073/pnas.1700010114 PubMed DOI PMC
Noguchi, T. et al. An another protocol to make sulfur embedded ultrathin sections of extraterrestrial small samples. Life10, 135 (2020). 10.3390/life10080135 PubMed DOI PMC
Bassim, N. et al. Minimizing damage during FIB sample preparation of soft materials. J. Microsc.245, 288–301 (2012).10.1111/j.1365-2818.2011.03570.x DOI
Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol.14, e1002340 (2016). 10.1371/journal.pbio.1002340 PubMed DOI PMC
Hitchcock, A. P. Analysis of X-ray images and spectra (aXis2000): A toolkit for the analysis of X-ray spectromicroscopy data. J. Electron Spectrosc. Relat. Phenom.266, 147360 (2023).10.1016/j.elspec.2023.147360 DOI
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat.12, 537–541 (2005). 10.1107/S0909049505012719 PubMed DOI