Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread

. 2023 Sep ; 239 (6) : 2389-2403. [epub] 20230712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37438886

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.

Biodiversity Macroecology and Biogeography University of Göttingen Büsgenweg 1 Göttingen 37077 Germany

Campus Institute Data Science Goldschmidtstraße 1 Göttingen 37077 Germany

Centre of Biodiversity and Sustainable Land Use University of Goettingen Büsgenweg 1 Göttingen D 37077 Germany

Department of Biosciences Durham University South Road Durham DH1 3LE UK

Department of Botany Faculty of Science University of South Bohemia Branišovská 1760 České Budějovice CZ 370 05 Czech Republic

Department of Ecology Faculty of Science Charles University Viničná 7 Prague CZ 128 44 Czech Republic

Department of Evolutionary Biology of Plants Institute of Botany Czech Academy of Sciences Průhonice CZ 252 43 Czech Republic

Department of Invasion Ecology Institute of Botany Czech Academy of Sciences Průhonice CZ 252 43 Czech Republic

Division of Bioinvasions Global Change and Macroecology Department of Botany and Biodiversity Research University of Vienna Wien 1030 Austria

Ecology Department of Biology University of Konstanz Universitätsstrasse 10 Constance D 78464 Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Puschstraße 4 Leipzig 04103 Germany

Research Centre for Global Change and Complex Ecosystems School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China

Royal Botanic Gardens Kew Richmond Surrey TW9 3AE UK

University of Rhode Island Natural Resources Science 9 East Alumni Avenue Kingston 02881 RI USA

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou 318000 China

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station School of Ecological and Environmental Sciences East China Normal University Shanghai 200241 China

Zobrazit více v PubMed

Amsellem L, Chevallier MH, Hossaert-McKey M. 2001. Ploidy level of the invasive weed Rubus alceifolius (Rosaceae) in its native range and in areas of introduction. Plant Systematics and Evolution 228: 171-179.

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986.

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437.

te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19-45.

Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 181: 109-135.

Bennett MD. 1973. Nuclear characters in plants. Brookhaven Symposium in Biology 25: 344-366.

Bennett MD, Leitch IJ. 2005a. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95: 45-90.

Bennett MD, Leitch IJ. 2005b. Genome size evolution in plants. In: Gregory TR, ed. The evolution of the genome. San Diego, CA, USA: Elsevier, 89-162.

Bennett MD, Smith JB. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society London B: Biological Sciences 274: 227-274.

Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM. 2011. A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26: 333-339.

Blanchet S, Leprieur F, Beauchard O, Staes J, Oberdorff T, Brosse S. 2009. Broad-scale determinants of non-native fish species richness are context-dependent. Proceedings of the Royal Society B: Biological Sciences 276: 2385-2394.

Burton T, Husband B. 2001. Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87: 573-582.

Cavalier-Smith T. 1985. The evolution of genome size. Chichester, UK: J. Wiley.

Cayuela L, Oksanen J. 2014. Taxonstand: taxonomic standardization of plant species names, v. 1.6. Vienna, Austria: R Foundation for Statistical Computing.

Čertner M, Fenclová E, Kúr P, Kolář F, Koutecký P, Krahulcová A, Suda J. 2017. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Annals of Botany 120: 303-315.

Chrtek J, Zahradníček J, Krak K, Fehrer J. 2009. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Annals of Botany 104: 161-178.

Convention on Biological Diversity. 2000. Alien species that threaten ecosystems, habitats or species. Nairobi, Kenya: UNEP/CBD/COP/5/8, Secretariat of the Convention on Biological Diversity.

Čuda J, Skálová H, Meyerson LA, Pyšek P. 2021. Regeneration of Phragmites australis from rhizome and culm fragments: an experimental test of environmental effects, population origin and invasion status. Preslia 93: 237-254.

Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, Lenzner B, Blackburn TM et al. 2017. Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution 1: 186.

Delavaux CS, Weigelt P, Dawson W, Duchicela J, Essl F, van Kleunen M, König C, Pergl J, Pyšek P, Stein A et al. 2019. Mycorrhizal fungi influence global plant geography. Nature Ecology & Evolution 3: 424-429.

Dellinger AS, Essl F, Hojsgaard D, Kirchheimer B, Klatt S, Dawson W, Pergl J, Pyšek P, van Kleunen M, Weber E et al. 2016. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist 209: 1313-1323.

DeWalt SJ, Hamrick JL. 2004. Genetic variation of introduced Hawaiian and native Costa Rican populations of an invasive tropical shrub, Clidemia hirta (Melastomataceae). American Journal of Botany 91: 1155-1162.

Edwards GA, Endrizzi JE. 1975. Cell size, nuclear size, and DNA content relationship in Gossypium. Canadian Journal of Genetics and Cytology 17: 181-186.

Ehrendorfer F. 1980. Polyploidy and distribution. In: Lewis WH, ed. Polyploidy: biological relevance. New York, NY, USA; London, UK: Plenum Press, 45-60.

Essl F, Dawson W, Kreft H, Pergl J, Pyšek P, van Kleunen M, Weigelt MT, Dullinger S, Lenzner B et al. 2019. Drivers of the relative richness of naturalized and invasive plant species on the Earth. AoB Plants 11: plz051.

Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039-1049.

Fridley JD, Craddock A. 2015. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytologist 207: 659-668.

Galbraith D, Loureiro J, Antoniadi I, Bainard J, Bureš P, Cápal P, Castro M, Castro S, Čertner M, Čertnerová D et al. 2021. Best practices in plant flow cytometry. Cytometry. Part A 99: 311-317.

Garcia S, Canela MÁ, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Vallès J. 2008. Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biological Journal of the Linnean Society 94: 631-649.

Gravuer K, Sullivan JJ, Williams PA, Duncan RP. 2008. Strong human association with plant invasion success for Trifolium introductions to New Zealand. Proceedings of the National Academy of Sciences, USA 105: 6344-6349.

Gregory TR. 2005. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals of Botany 95: 133-146.

Greilhuber J, Doležel J, Lysak MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany 95: 255-260.

Grotkopp E, Rejmánek M, Rost TL. 2002. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist 159: 396-419.

Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. 2004. Evolution of genome size in pines (Pinus) and its life history correlates: supertree analysis. Evolution 58: 1705-1729.

Guggisberg A, Mansion G, Kelso S, Conti E. 2006. Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex of Primula. New Phytologist 171: 617-632.

Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ, Leitch AR. 2016. Genome size and ploidy influence angiosperm species biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195-1206.

Guo W-Y, van Kleunen M, Winter M, Weigelt P, Stein A, Pierce S, Pergl J, Moser D, Maurel N, Lenzner B et al. 2018. The role of adaptive strategies in plant naturalization. Ecology Letters 21: 1380-1389.

Ho LST, Ané C. 2014. Package ‘phylolm’: phylogenetic linear regression, v. 2.2. [WWW document] URL https://cran.r-project.org/web/packages/phylolm/index.html [accessed 8 June 2022].

Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y et al. 2010. Stomatal vs genome size in angiosperms: the somatic tail wagging the genomic dog? Annals of Botany 105: 573-584.

Ives AR. 2019. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Systematic Biology 68: 234-251.

Ives AR, Garland T. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59: 9-26.

Ives AR, Li D. 2018. rr2: an R package to calculate R2s for regression models. Journal of Open Source Software 3: 1028.

Jian Y, Xu C, Guo Z, Wang S, Xu Y, Zou C. 2017. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Scientific Reports 7: 5954.

Jin Y, Qian HV. 2019. phylomaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42: 1353-1359.

Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M et al. 2020. TRY plant trait database: enhanced coverage and open access. Global Change Biology 26: 119-188.

van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M et al. 2015. Global exchange and accumulation of non-native plants. Nature 525: 100-103.

van Kleunen M, Johnson SD, Fischer M. 2007. Predicting naturalization of southern African Iridaceae in other regions. Journal of Applied Ecology 44: 594-603.

van Kleunen M, Pyšek P, Dawson W, Essl F, Kreft H, Pergl J, Weigelt P, Stein A, Dullinger S, König C et al. 2019. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100: e02542.

van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235-245.

Knight CA, Ackerly DD. 2002. Genome size variation across environmental gradients in the California flora. Ecology Letters 5: 66-76.

Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM. 2010. On the relationship between pollen size and genome size. Journal of Botany 2010: 612017.

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177-190.

Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041-1055.

Krahulcová A, Trávníček P, Krahulec F, Rejmánek M. 2017. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae). Annals of Botany 119: 957-964.

Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105: 348-363.

Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.

Leitch IJ, Bennett MD. 2007. Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J, eds. Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Weinheim, Germany: Wiley-VCH, 153-176.

Lenth R. 2020. Emmeans: estimated marginal means, aka least-squares means, v. 1.4.4. R package version. [WWW document] URL https://CRAN.R-project.org/package=emmeans [accessed 8 June 2022].

Lenzner B, Magallón S, Dawson W, Kreft H, König C, Pergl J, Pyšek P, Weigelt P, van Kleunen M, Winter M et al. 2021. Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytologist 229: 2998-3008.

Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v.4: recent updates and new developments. Nucleic Acids Research 47: W256-W259.

Levin DA. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 122: 1-25.

Levin DA. 2002. The role of chromosomal change in plant evolution. New York, NY, USA: Oxford University.

Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X et al. 2022. The Cycas genome and the early evolution of seed plants. Nature Plants 8: 389-401.

Luo C, Chen D, Cheng X, Zhao H, Huang C. 2017. Genome size estimations in Chrysanthemum and correlations with molecular phylogenies. Genetic Resources and Crop Evolution 64: 1451-1463.

Meagher TR, Vassiliadis C. 2005. Phenotypic impacts of repetitive DNA in flowering plants. New Phytologist 168: 71-80.

Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C, Lučanová M, Rinehart S, Suda J, Pyšek P. 2016. Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biological Invasions 18: 2531-2549.

Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran C-T, Cronin JT. 2020. Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11: e03145.

Moodley D, Geerts S, Richardson DM, Wilson JRU. 2013. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8: e75078.

Morgan HD, Westoby M. 2005. The relationship between nuclear DNA content and leaf strategy in seed plants. Annals of Botany 96: 1321-1330.

Naiki A, Nagamasu H. 2004. Correlation between distyly and ploidy level in Damnacanthus (Rubiaceae). American Journal of Botany 91: 664-671.

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.

Pagad S, Genovesi P, Carnevali L, Schigel D, McGeoch MA. 2018. Introducing the global register of introduced and invasive species. Scientific Data 5: 170202.

Pandit MK, White SM, Pocock MJO. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist 203: 697-703.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes (Basel) 9: 88.

Puttik MN, Clark C, Donoghue PCJ. 2019. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proceedings of the Royal Society B: Biological Sciences 282: 20152289.

Pyšek P. 1997. Clonality and plant invasions: can a trait make a difference? In: de Kroon H, van Groenendael J, eds. The ecology and evolution of clonal plants. Leiden, the Netherlands: Backhuys Publishers, 405-427.

Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA, Hulme PE, Pergl J, Richardson DM, Wilson JRU, Blackburn TM. 2020a. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context-dependence in biological invasions. NeoBiota 62: 407-461.

Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P et al. 2020b. Scientists' warning on invasive alien species. Biological Reviews 95: 1511-1534.

Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek J, Sádlo J. 2009. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions 15: 891-903.

Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, Chytrý M, Danihelka J, Kartesz J, Klimešová J et al. 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96: 762-774.

Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M et al. 2017. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89: 203-274.

Pyšek P, Richardson DM. 2007. Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W, ed. Biological invasions. Ecological studies, vol. 193. Berlin, Heidelberg, Germany: Springer, 97-125.

Pyšek P, Skálová H, Čuda J, Guo W-Y, Doležal J, Kauzál O, Lambertini C, Pyšková K, Brix H, Meyerson LA. 2019. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 91: 51-75.

Pyšek P, Skálová H, Čuda J, Guo W-Y, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T et al. 2018. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99: 79-90.

R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 8 June 2022].

Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, van Kleunen M. 2016. Plants capable of selfing are more likely to become naturalized. Nature Communications 7: 13313.

Razanajatovo M, van Kleunen M, Kreft H, Dawson W, Essl F, Pergl J, Pyšek P, Winter M, Weigelt P. 2019. Autofertility and self-compatibility moderately benefit Island colonization of plants. Global Ecology and Biogeography 28: 341-352.

Rejmánek M. 1996. A theory of seed plant invasiveness: the first sketch. Biological Conservation 78: 171-181.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.

Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I. 2019. The global biogeography of polyploid plants. Nature Ecology & Evolution 3: 265-273.

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93-107.

Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103-113.

Schierenbeck KA, Ainouche ML. 2006. The role of evolutionary genetics in studies of plant invasions. In: Cadotte MW, McMahon SM, Fukami F, eds. Conceptual ecology and invasion biology: reciprocal approaches to nature. Dordrecht, the Netherlands: Springer, 193-221.

Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M et al. 2022. Application-based guidelines for best practices in plant flow cytometry. Cytometry. Part A 101: 749-781.

Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist 200: 911-921.

Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302-314.

Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology & Evolution 14: 348-351.

Soltis PS, Soltis DE. 2020. Plant genomes: markers of evolutionary history and drivers of evolutionary change. Plants People Planet 3: 74-82.

Stebbins GL. 1985. Polyploidy, hybridization and the invasion of new habitats. Annals of the Missouri Botanical Garden 72: 824-832.

Suda J, Meyerson LA, Leitch I, Pyšek P. 2015. The hidden side of plant invasions: the role of genome size. New Phytologist 205: 994-1007.

Thompson JD, Lumaret R. 1992. The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology & Evolution 7: 302-307.

Thuiller W, Richardson DM, Rouget M, Proches Ş, Wilson JRU. 2006. Interactions between environment, species traits and human uses describe patterns of plant invasions. Ecology 87: 1755-1769.

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411-424.

Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. 2021. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant Journal 107: 1003-1015.

Weber E. 2017. Invasive plant species of the world: reference guide to environmental weeds, 2nd edn. Wallingford, UK: CABI Publishing.

Weigelt P, König C, Kreft H. 2020. GIFT - A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography 47: 16-43.

Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753-1756.

Williamson M. 2006. Explaining and predicting the success of invading species at different stages of invasion. Biological Invasions 8: 1561-1568.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875-13879.

Zenni RD, Lamy J-B, Lamarque LJ, Porté AJ. 2014. Adaptive evolution and phenotypic plasticity during naturalization and spread of invasive species: implications for tree invasion biology. Biological Invasions 16: 635-644.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plant invasion and naturalization are influenced by genome size, ecology and economic use globally

. 2024 Feb 13 ; 15 (1) : 1330. [epub] 20240213

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...