Economic use of plants is key to their naturalization success
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 2086
Austrian Science Fund FWF - Austria
I 3757
Austrian Science Fund FWF - Austria
PubMed
32581263
PubMed Central
PMC7314777
DOI
10.1038/s41467-020-16982-3
PII: 10.1038/s41467-020-16982-3
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- fyziologie rostlin * MeSH
- rostliny klasifikace MeSH
- semena rostlinná klasifikace fyziologie MeSH
- zachování přírodních zdrojů MeSH
- zavlečené druhy ekonomika MeSH
- zemědělství * ekonomika MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Humans cultivate thousands of economic plants (i.e. plants with economic value) outside their native ranges. To analyze how this contributes to naturalization success, we combine global databases on economic uses and naturalization success of the world's seed plants. Here we show that naturalization likelihood is 18 times higher for economic than non-economic plants. Naturalization success is highest for plants grown as animal food or for environmental uses (e.g. ornamentals), and increases with number of uses. Taxa from the Northern Hemisphere are disproportionately over-represented among economic plants, and economic plants from Asia have the greatest naturalization success. In regional naturalized floras, the percentage of economic plants exceeds the global percentage and increases towards the equator. Phylogenetic patterns in the naturalized flora partly result from phylogenetic patterns in the plants we cultivate. Our study illustrates that accounting for the intentional introduction of economic plants is key to unravelling drivers of plant naturalization.
Czech Academy of Sciences Institute of Botany CZ 252 43 Průhonice Czech Republic
Department of Biosciences Durham University South Road Durham DH1 3LE UK
Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D 78457 Konstanz Germany
Zobrazit více v PubMed
Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:7.
Lewis SL, Maslin MA. Defining the Anthropocene. Nature. 2015;519:171–180. doi: 10.1038/nature14258. PubMed DOI
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:9. PubMed PMC
Seebens H, et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA. 2018;115:E2264–E2273. PubMed PMC
Lever, C. They Dined on Eland: The Story of the Acclimatisation Societies (Quiller Press, 1992).
Hulme PE, et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 2008;45:403–414.
Reichard SH, White P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience. 2001;51:103–113.
Lambdon PW, et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia. 2008;80:101–149.
Bolvin NL, et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA. 2016;113:6388–6396. PubMed PMC
Gomez Ortega, C. Instruccion sobre el Modo mas Seguro y Económico de Transportar Plantas Vivas por Mar y Tierra á los Paises mas Distantes (Por D. Joachin Ibarra Impressor de Camara de S.M., 1779).
Stöcklin J, Schaub P, Ojala J. Häufigkeit und Ausbreitungsdynamik von Neophyten in der Region Basel: Anlass zur Besorgnis oder Bereicherung? Bauhinia. 2003;17:11–23.
Whittle, T. The Plant Hunters (Heinemann, 1970).
Ward, B. J. The Plant Hunter’s Garden. The New Explorers and their Discoveries (Timber Press, 2004).
Osborne M. Acclimatizing the world: a history of the paradigmatic colonial science. Osiris. 2001;15:135–151. PubMed
Fairchild DG. Systematic Plant Introduction: Its Purposes and Methods. Washington DC: Government Printing Office; 1898.
Kirkland, A. & Berg, P. A Century of State-honed Enterprise: 100 Years of State Plantation Forestry in New Zealand (Profile Books, 1997).
Cook GD, Dias L. It was no accident: deliberate plant introductions by Australian government agencies during the 20th century. Aust. J. Bot. 2006;54:601–625.
Turbelin AJ, Malamud BD, Francis RA. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 2017;26:78–92.
van Kleunen M, et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018;93:1421–1437. PubMed
Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005;20:223–228. PubMed
Simberloff D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 2009;40:81–102.
Rejmánek M. Invasive plants: approaches and predictions. Austral Ecol. 2000;25:497–506.
Pyšek, P. & Jarošík, V. in Inderjit (ed) Invasive Plants: Ecological and Agricultural Aspects Birkhäuser Verlag 77−96 (2005).
Bucharova A, van Kleunen M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 2009;97:230–238.
Baker, H. G. in Baker, H. G. & Stebbins, G. L. (eds) The Genetics of Colonizing Species (Academic Press, 1965).
van Kleunen M, Dawson W, Maurel N. Characteristics of successful alien plants. Mol. Ecol. 2015;24:1954–1968. PubMed
Pyšek P, et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology. 2015;96:762–774. PubMed
Driscoll DA, et al. New pasture plants intensify invasive species risk. Proc. Natl Acad. Sci. USA. 2014;111:16622–16627. PubMed PMC
van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010;13:235–245. PubMed
Grotkopp E, Erskine-Ogden J, Rejmánek M. Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. J. Appl. Ecol. 2010;47:1320–1328.
Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 2016;25:1500–1509.
Haeuser E, et al. European ornamental garden flora as an invasion debt under climate change. J. Appl. Ecol. 2018;55:2386–2395.
Clement, E. J. & Foster, M. C. AlienPlants of the British Isles. A Provisional Catalogue of Vascular Plants (Excluding Grasses) (Botanical Society of the British Isles, 1994).
Ryves, T. B., Clement, E. J. & Foster, M. C. Alien Grasses of the British Isles (Botanical Society of the British Isles, 1996).
Pyšek P, Sádlo J, Mandák B. Catalogue of alien plants of the Czech Republic. Preslia. 2002;74:97–186.
Rejmánek, M. in Orians, G., Dirzo, H., & Cushman, J. H. (eds) Biodiversity and Ecosystem Processes in Tropical Forests 153–172 (Springer-Verlag, 1996).
Pyšek P, et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia. 2017;89:203–274.
Essl F, et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants. 2019;11:plz051. PubMed PMC
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. PubMed
Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life (Murray, 1859). PubMed PMC
Fridley JD, Sax DF. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 2014;23:1157–1166.
di Castri, F. in Drake, J. A. et al. (eds) Biological Invasions: A Global Perspective (John Wiley & Sons Ltd, 1989).
Crosby, A. W. Ecological Imperialism: The Biological Expansion of Europe, 900-1900 (Cambridge University Press, 2004).
Lenzner, B., Essl, F. & Seebens, H. in Rozziet, R. et al. (eds) From Biocultural Homogenization to Biocultural Conservation (Springer, 2019).
Wiersema, J. H. & Leon, B. World Economic Plants. A Standard Reference 2nd edn (CRC Press, 2013).
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:2. PubMed
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA. 2018;115:6506–6511. PubMed PMC
Pyšek P, Sádlo J, Mandák B, Jarošik V. Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia. 2003;135:122–130. PubMed
Pergl, J. et al. Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways? NeoBiota, 1–20 10.3897/neobiota.32.10199 (2017).
Leigh EG, Vermeij GJ, Wikelski M. What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution? J. Evolut. Biol. 2009;22:1–12. PubMed
Moser D, et al. Remoteness promotes biological invasions on islands worldwide. Proc. Natl Acad. Sci. USA. 2018;115:9270–9275. PubMed PMC
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269.
Freestone AL, Ruiz GM, Torchin ME. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics. Ecology. 2013;94:1370–1377. PubMed
FAO. The State of Food and Agriculture. Biofuels: Prospects, Risks and Opportunities (FAO, Rome, 2008).
Richardson DM, et al. Naturalization and invasion of alien plants: concepts and definitions. Diversity Distrib. 2000;6:93–107.
Brummit, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn (Hunt Institute for Botanical Documentation, 2001).
Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.1. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2017).
R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. PubMed
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223.
Ho LST, Ane C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 2014;63:397–408. PubMed
Komsta, L. mblm: Median-Based Linear Models. R package version 0.12.1. https://CRAN.R-project.org/package=mblm (R Foundation for Statistical Computing, Vienna, 2019).
Joppa L, Visconti P, Jenkins CN, Pimm SL. Achieving the convention on biological diversity’s goals for plant conservation. Science. 2013;341:1100–1103. PubMed
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Faith DP. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992;61:1–10.
Hastie, T. gam: Generalized Additive Models. R package version 1.16.1. https://CRAN.R-project.org/package=gam (R Foundation for Statistical Computing, Vienna, 2019).
Plant invasion and naturalization are influenced by genome size, ecology and economic use globally
A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
Historical plant introductions predict current insect invasions
Underexplored and growing economic costs of invasive alien trees
The role of phylogenetic relatedness on alien plant success depends on the stage of invasion
The global loss of floristic uniqueness
Data Descriptor: Pacific Introduced Flora (PaciFLora)
Role of diversification rates and evolutionary history as a driver of plant naturalization success
figshare
10.6084/m9.figshare.12278057.v1