Evolutionary imbalance, climate and human history jointly shape the global biogeography of alien plants
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37652998
DOI
10.1038/s41559-023-02172-z
PII: 10.1038/s41559-023-02172-z
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- lidé MeSH
- podnebí MeSH
- rostliny MeSH
- semena rostlinná MeSH
- zavlečené druhy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.
Biodiversity Macroecology and Biogeography University of Goettingen Göttingen Germany
Botanical Museum Finnish Museum of Natural History University of Helsinki Helsinki Finland
Centre of Biodiversity and Sustainable Land Use University of Goettingen Göttingen Germany
Department of Biosciences Durham University Durham UK
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Ecology Department of Biology University of Konstanz Konstanz Germany
Icelandic Institute of Natural History Borgir vid Nordurslod Akureyri Iceland
The German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Zobrazit více v PubMed
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000). DOI
Darwin, C. On the Origin of Species (John Murray, 1859).
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed DOI
van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020). PubMed DOI PMC
Dyer, E. E. et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 15, e2000942 (2017). PubMed DOI PMC
Dyer, E. E., Redding, D. W. & Blackburn, T. M. The global avian invasions atlas, a database of alien bird distributions worldwide. Sci. Data 4, 170041 (2017). PubMed DOI PMC
van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019). PubMed DOI
Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991). PubMed DOI
Vermeij, G. in Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F. et al.) 315–340 (Sinauer, 2005).
Fridley, J. D. & Sax, D. F. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23, 1157–1166 (2014). DOI
Leimu, R., Mutikainen, P., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94, 942–952 (2006). DOI
Tilman, D. Diversification, biotic interchange, and the universal trade-off hypothesis. Am. Nat. 178, 355–371 (2011). PubMed DOI
Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1972).
Cody, M. L. & Mooney, H. A. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annu. Rev. Ecol. Syst. 9, 265–321 (1978). DOI
Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991). DOI
Leigh, E. G. Jr, Vermeij, G. J. & Wikelski, M. What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution? J. Evolut. Biol. 22, 1–12 (2009). DOI
Fridley, J. D., Jo, I., Hulme, P. E. & Duncan, R. P. A habitat-based assessment of the role of competition in plant invasions. J. Ecol. 109, 1263–1274 (2021). DOI
World Checklist of Vascular Plants, Version 2.0 (Royal Botanic Gardens Kew, 2022); http://wcvp.science.kew.org/
Haeuser, E. et al. European ornamental garden flora as an invasion debt under climate change. J. Appl. Ecol. 55, 2386–2395 (2018). DOI
Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. USA 117, 23643–23651 (2020). PubMed DOI PMC
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015). DOI
Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017). PubMed DOI PMC
di Castri, F. in Biological Invasions: A Global Perspective (eds Drake, J.A. et al.) 1–30 (Wiley, 1989).
MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005). DOI
Brummitt, R. World Geographical Scheme for Recording Plant Distributions, Edition 2 (Hunt Institute for Botanical Documentation, Carnegie Mellon University, 2001); http://www.tdwg.org/standards/109
Global Compositae Database (Compositae Working Group, 2022); https://www.compositae.org/
The IUCN Red List of Threatened Species (IUCN, 2022); https://www.iucnredlist.org
USDA-ARS Germplasm Resources Information Network (GRIN) (United States Department of Agriculture, 2022); https://www.ars-grin.gov
Plants of the World Online (Royal Botanic Gardens Kew, 2022); http://www.plantsoftheworldonline.org/
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A. StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Sci. Data 7, 335 (2020). PubMed DOI PMC
Ehlers, J., Gibbard, P. L. & Hughes, P. D. Quaternary Glaciations - Extent and Chronology: A Closer Look (Elsevier, 2011).
Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021). PubMed DOI PMC
Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017). DOI
Diamond, J. M. Guns, Germs, and Steel: The Fates of Human Societies (W.W. Norton, 1997).
Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003). PubMed DOI
Vilela, B. et al. Cultural transmission and ecological opportunity jointly shaped the spread of human agriculture. Evol. Hum. Sci. 2, E53 (2020).
Balick, M. J. & Cox, P. A. Plants, People, and Culture: The Science of Ethnobotany (Garland Science, 2020). DOI
Vavilov, N. I., Vavylov, M. I. & Dorofeev, V. F. Origin and Geography of Cultivated Plants (Cambridge Univ. Press, 1992).
Phillips, O. & Gentry, A. H. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ. Bot. 47, 33–43 (1993). DOI
Gaoue, O. G. et al. Theories and major hypotheses in ethnobotany. Econ. Bot. 71, 269–287 (2017). DOI
Milla, R. et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018). PubMed DOI
Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019). PubMed DOI PMC
Pyšek, P. et al. The global invasion success of central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009). DOI
Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci USA 118, e2021173118 (2021).
Sheth, S. N. & Angert, A. L. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68, 2917–2931 (2014). PubMed DOI
Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015). PubMed DOI
Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009). DOI
Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011). PubMed DOI
Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097 (2014). PubMed DOI PMC
Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551–572 (2015). DOI
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021). DOI
Preston, C. D., Pearman, D. A. & Hall, A. R. Archaeophytes in Britain. Bot. J. Linn. Soc. 145, 257–294 (2004). DOI
Ecseri, K. & Honfi, P. Comparison of European archaeophyte lists in the light of distribution data. Not. Bot. Horti Agrobot. Cluj Napoca 48, 480–491 (2020). DOI
van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018). DOI
Lenzner, B. et al. Role of diversification rates and evolutionary history as a driver of plant naturalization success. N. Phytol. 229, 2998–3008 (2021). DOI
Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017). DOI
Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522–1536 (1999). DOI
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992). DOI
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI
Dengler, J. Which function describes the species–area relationship best? A review and empirical evaluation. J. Biogeogr. 36, 728–744 (2009). DOI
Diazgranados, M. et al. World Checklist of Useful Plant Species (Knowledge Network for Biocomplexity, 2020); https://doi.org/10.5063/F1CV4G34
Fouquin, M. & Hugot, J. Two Centuries of Bilateral Trade and Gravity Data: 1827–2014 (CEPII, 2016).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI
Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021). PubMed DOI PMC
R: A Language and Environment for Statistical Computing (R Development Core Team, 2022).
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013). DOI
Pinheiro, J., Bates, D. & R Core Team nlme: Linear and Nonlinear Mixed Effects Models http://CRAN.R-project.org/package=nlme (2023).
Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014). DOI
Hilbe, J. M. Logistic Regression Models (CRC Press, 2009). DOI
Hartig, F. DHARMa: Residual Diagnostics for HierARchical Models http://florianhartig.github.io/DHARMa/ (2022).
Fristoe, T. S. et al. Evolutionary imbalance, human history, and the global biogeography of alien plants. Figshare https://doi.org/10.6084/m9.figshare.21512145 (2023).
figshare
10.6084/m9.figshare.21512145