Evolutionary imbalance, climate and human history jointly shape the global biogeography of alien plants

. 2023 Oct ; 7 (10) : 1633-1644. [epub] 20230831

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37652998
Odkazy

PubMed 37652998
DOI 10.1038/s41559-023-02172-z
PII: 10.1038/s41559-023-02172-z
Knihovny.cz E-zdroje

Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.

Zobrazit více v PubMed

Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

Darwin, C. On the Origin of Species (John Murray, 1859).

van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed

van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020). PubMed PMC

Dyer, E. E. et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 15, e2000942 (2017). PubMed PMC

Dyer, E. E., Redding, D. W. & Blackburn, T. M. The global avian invasions atlas, a database of alien bird distributions worldwide. Sci. Data 4, 170041 (2017). PubMed PMC

van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019). PubMed

Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991). PubMed

Vermeij, G. in Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F. et al.) 315–340 (Sinauer, 2005).

Fridley, J. D. & Sax, D. F. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23, 1157–1166 (2014).

Leimu, R., Mutikainen, P., Koricheva, J. & Fischer, M. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94, 942–952 (2006).

Tilman, D. Diversification, biotic interchange, and the universal trade-off hypothesis. Am. Nat. 178, 355–371 (2011). PubMed

Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).

MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1972).

Cody, M. L. & Mooney, H. A. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annu. Rev. Ecol. Syst. 9, 265–321 (1978).

Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

Leigh, E. G. Jr, Vermeij, G. J. & Wikelski, M. What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution? J. Evolut. Biol. 22, 1–12 (2009).

Fridley, J. D., Jo, I., Hulme, P. E. & Duncan, R. P. A habitat-based assessment of the role of competition in plant invasions. J. Ecol. 109, 1263–1274 (2021).

World Checklist of Vascular Plants, Version 2.0 (Royal Botanic Gardens Kew, 2022); http://wcvp.science.kew.org/

Haeuser, E. et al. European ornamental garden flora as an invasion debt under climate change. J. Appl. Ecol. 55, 2386–2395 (2018).

Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. USA 117, 23643–23651 (2020). PubMed PMC

Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015).

Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017). PubMed PMC

di Castri, F. in Biological Invasions: A Global Perspective (eds Drake, J.A. et al.) 1–30 (Wiley, 1989).

MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).

Brummitt, R. World Geographical Scheme for Recording Plant Distributions, Edition 2 (Hunt Institute for Botanical Documentation, Carnegie Mellon University, 2001); http://www.tdwg.org/standards/109

Global Compositae Database (Compositae Working Group, 2022); https://www.compositae.org/

The IUCN Red List of Threatened Species (IUCN, 2022); https://www.iucnredlist.org

USDA-ARS Germplasm Resources Information Network (GRIN) (United States Department of Agriculture, 2022); https://www.ars-grin.gov

Plants of the World Online (Royal Botanic Gardens Kew, 2022); http://www.plantsoftheworldonline.org/

Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A. StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Sci. Data 7, 335 (2020). PubMed PMC

Ehlers, J., Gibbard, P. L. & Hughes, P. D. Quaternary Glaciations - Extent and Chronology: A Closer Look (Elsevier, 2011).

Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021). PubMed PMC

Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).

Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

Diamond, J. M. Guns, Germs, and Steel: The Fates of Human Societies (W.W. Norton, 1997).

Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003). PubMed

Vilela, B. et al. Cultural transmission and ecological opportunity jointly shaped the spread of human agriculture. Evol. Hum. Sci. 2, E53 (2020).

Balick, M. J. & Cox, P. A. Plants, People, and Culture: The Science of Ethnobotany (Garland Science, 2020).

Vavilov, N. I., Vavylov, M. I. & Dorofeev, V. F. Origin and Geography of Cultivated Plants (Cambridge Univ. Press, 1992).

Phillips, O. & Gentry, A. H. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ. Bot. 47, 33–43 (1993).

Gaoue, O. G. et al. Theories and major hypotheses in ethnobotany. Econ. Bot. 71, 269–287 (2017).

Milla, R. et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018). PubMed

Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019). PubMed PMC

Pyšek, P. et al. The global invasion success of central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).

Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci USA 118, e2021173118 (2021).

Sheth, S. N. & Angert, A. L. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68, 2917–2931 (2014). PubMed

Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015). PubMed

Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).

Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011). PubMed

Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097 (2014). PubMed PMC

Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551–572 (2015).

Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).

Preston, C. D., Pearman, D. A. & Hall, A. R. Archaeophytes in Britain. Bot. J. Linn. Soc. 145, 257–294 (2004).

Ecseri, K. & Honfi, P. Comparison of European archaeophyte lists in the light of distribution data. Not. Bot. Horti Agrobot. Cluj Napoca 48, 480–491 (2020).

van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).

Lenzner, B. et al. Role of diversification rates and evolutionary history as a driver of plant naturalization success. N. Phytol. 229, 2998–3008 (2021).

Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).

Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522–1536 (1999).

Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed

Dengler, J. Which function describes the species–area relationship best? A review and empirical evaluation. J. Biogeogr. 36, 728–744 (2009).

Diazgranados, M. et al. World Checklist of Useful Plant Species (Knowledge Network for Biocomplexity, 2020); https://doi.org/10.5063/F1CV4G34

Fouquin, M. & Hugot, J. Two Centuries of Bilateral Trade and Gravity Data: 1827–2014 (CEPII, 2016).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021). PubMed PMC

R: A Language and Environment for Statistical Computing (R Development Core Team, 2022).

Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

Pinheiro, J., Bates, D. & R Core Team nlme: Linear and Nonlinear Mixed Effects Models http://CRAN.R-project.org/package=nlme (2023).

Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

Hilbe, J. M. Logistic Regression Models (CRC Press, 2009).

Hartig, F. DHARMa: Residual Diagnostics for HierARchical Models http://florianhartig.github.io/DHARMa/ (2022).

Fristoe, T. S. et al. Evolutionary imbalance, human history, and the global biogeography of alien plants. Figshare https://doi.org/10.6084/m9.figshare.21512145 (2023).

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.21512145

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...