The global loss of floristic uniqueness
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 2086
Austrian Science Fund FWF - Austria
I 3757
Austrian Science Fund FWF - Austria
I 4011
Austrian Science Fund FWF - Austria
PubMed
34911960
PubMed Central
PMC8674287
DOI
10.1038/s41467-021-27603-y
PII: 10.1038/s41467-021-27603-y
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeneze MeSH
- podnebí MeSH
- rostliny klasifikace MeSH
- zavlečené druhy statistika a číselné údaje MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Regional species assemblages have been shaped by colonization, speciation and extinction over millions of years. Humans have altered biogeography by introducing species to new ranges. However, an analysis of how strongly naturalized plant species (i.e. alien plants that have established self-sustaining populations) affect the taxonomic and phylogenetic uniqueness of regional floras globally is still missing. Here, we present such an analysis with data from native and naturalized alien floras in 658 regions around the world. We find strong taxonomic and phylogenetic floristic homogenization overall, and that the natural decline in floristic similarity with increasing geographic distance is weakened by naturalized species. Floristic homogenization increases with climatic similarity, which emphasizes the importance of climate matching in plant naturalization. Moreover, floristic homogenization is greater between regions with current or past administrative relationships, indicating that being part of the same country as well as historical colonial ties facilitate floristic exchange, most likely due to more intensive trade and transport between such regions. Our findings show that naturalization of alien plants threatens taxonomic and phylogenetic uniqueness of regional floras globally. Unless more effective biosecurity measures are implemented, it is likely that with ongoing globalization, even the most distant regions will lose their floristic uniqueness.
AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France
Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany
Biota of North America Program Chapel Hill NC USA
Botanical Garden Institute FEB RAS Vladivostok Russia
Campus Institut Data Science Göttingen Germany
Central Siberian Botanical Garden Siberian Branch of Russian Academy of Sciences Novosibirsk Russia
Centre of Biodiversity and Sustainable Land Use University of Goettingen Göttingen Germany
Departamento de Botánica Universidad Nacional Autónoma de México Mexico City Mexico
Departamento de Ecologia e Zoologia Federal University of Santa Catarina Florianópolis Brazil
Department of Biosciences Durham University Durham UK
Department of Botany Tomsk State University Tomsk Russia
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Ecology and Macroecology group University of Potsdam Potsdam Germany
Ecology Department of Biology University of Konstanz Konstanz Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Ingenieur en Ecologie vegetale Algiers Algeria
Institute of Human Ecology Siberian Branch of Russian Academy of Sciences Kemerovo Russia
Naturalis Biodiversity Centre Leiden The Netherlands
Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany
Zobrazit více v PubMed
Capinha C, Essl F, Seebens H, Moser D, Pereira HM. The dispersal of alien species redefines biogeography in the Anthropocene. Science. 2015;348:1248–1251. PubMed
Anton A, et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 2019;3:787–800. PubMed
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. PubMed
Richardson DM, Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. N. Phytol. 2012;196:383–396. PubMed
Richardson DM, et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 2000;6:93–107.
Olden JD. Biotic homogenization: a new research agenda for conservation biogeography. J. Biogeogr. 2006;33:2027–2039.
Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004;19:18–24. PubMed
Olden JD, Douglas ME, Douglas MR. The human dimensions of biotic homogenization. Conserv. Biol. 2005;19:2036–2038.
Bernardo-Madrid R, et al. Human activity is altering the world’s zoogeographical regions. Ecol. Lett. 2019;22:1297–1305. PubMed
Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl Acad. Sci. USA. 2011;108:18003–18008. PubMed PMC
Fricke EC, Svenning JC. Accelerating homogenization of the global plant-frugivore meta-network. Nature. 2020;585:74–78. PubMed
Winter M, et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA. 2009;106:21721–21725. PubMed PMC
Qian H, Ricklefs RE. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 2006;9:1293–1298. PubMed
de la Riva EG, Godoy O, Castro-Diez P, Gutierrez-Canovas C, Vila M. Functional and phylogenetic consequences of plant invasion for coastal native communities. J. Veg. Sci. 2019;30:510–520.
Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999;26:867–878.
Soininen J, McDonald R, Hillebrand H. The distance decay of similarity in ecological communities. Ecography. 2007;30:3–12.
König C, Weigelt P, Kreft H. Dissecting global turnover in vascular plants. Glob. Ecol. Biogeogr. 2017;26:228–242.
Hayes KR, Barry SC. Are there any consistent predictors of invasion success? Biol. Invasions. 2008;10:483–506.
Di Castri, F. in Biological Invasions: A Global Perspective (eds Drake, J. A. et al.) 1–30 (John Wiley and Sons, 1989).
Bertelsmeier C, Ollier S, Liebhold A, Keller L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 2017;1:0184. PubMed PMC
Chapman D, Purse BV, Roy HE, Bullock JM. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 2017;26:907–917.
McCracken, D. P. Gardens of Empire: Botanical institutions of the Victorian British Empire (Leicester University Press, 1997).
Mitchener KJ, Weidenmier M. Trade and empire. EJ. 2008;118:1805–1834.
The Plant List (2013). Version 1.1. Published on the Internet (accessed 17 February 2020); http://www.theplantlist.org/.
Rosenzweig ML. The four questions: what does the introduction of exotic species do to diversity. Evol. Ecol. Res. 2001;3:361–367.
Goodwin BJ, McAllister AJ, Fahrig L. Predicting invasiveness of plant species based on biological information. Conserv. Biol. 1999;13:422–426.
Forcella F, Wood JT. Colonization potentials of alien weeds are related to their native distributions: implications for plant quarantine. Aust. J. Agric. Res. 1984;50:35–40.
Theoharides KA, Dukes JS. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. N. Phytol. 2007;176:256–273. PubMed
Rejmánek, M. & Richardson, D. M. in Encyclopedia of Biological Invasions (eds Simberloff, D & Rejmánek, M.) 203–209 (University of California Press, 2011).
Chytry M, et al. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 2009;15:98–107.
Early R, et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016;7:12485. PubMed PMC
Crisp M, Cook L, Steane D. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2004;359:1551–1571. PubMed PMC
Cook GD, Dias L. It was no accident: deliberate plant introductions by Australian government agencies during the 20th century. Aust. J. Bot. 2006;54:601–625.
Kirkland, A. & Berg, P. A Century of State-honed Enterprise: 100 Years of State Plantation Forestry in New Zealand (Profile Books, 1997).
Kier G, et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA. 2009;106:9322–9327. PubMed PMC
Essl F, et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. Aob Plants. 2019;11:plz051. PubMed PMC
Weigelt P, et al. Global patterns and drivers of phylogenetic structure in island floras. Sci. Rep. 2015;5:12213. PubMed PMC
Kisel Y, Barraclough TG. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 2010;175:316–334. PubMed
McKinney, M. L. & Lockwood, J. L. in Species Invasions—Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F., Stachowicz, J. J. & Gaines, S. D.) 365–380 (Sinauer Associates, 2005).
Rejmánek M. Waiting for the Homogecene. Ecology. 2002;83:1472–1473.
Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 2020;27:970–982. PubMed
Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 2015;6:8450. PubMed PMC
Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. From current distinctiveness to future homogenization of the world’s freshwater fish faunas. Divers. Distrib. 2015;21:223–235.
Rooney TP, Olden JD, Leach MK, Rogers DA. Biotic homogenization and conservation prioritization. Biol. Conserv. 2007;134:447–450.
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:e02542. PubMed
Weigelt P, König C, Kreft H. GIFT - A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 2020;47:16–43.
van Kleunen M, et al. Economic use of plants is key to their naturalization success. Nat. Commun. 2020;11:3201. PubMed PMC
Pebesma E. Simple features for R: standardized support for spatial vector. Data. R. J. 2018;10:439–446.
Simpson GG. Notes on the measurement of faunal resemblance. Am. J. Sci. 1960;258:300–311.
Baselga A, Leprieur F. Comparing methods to separate components of beta diversity. Methods Ecol. Evol. 2015;6:1069–1079.
Leprieur F, et al. Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE. 2012;7:e42760. PubMed PMC
Baselga A, Orme CDL. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 2012;3:808–812.
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. PubMed
Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere (2019).
Fick SE, Hijmans RJ. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315.
Vilela, B. normalizer: Making data normal again. R package version 0.1.0. (2020).
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. PubMed PMC
Fouquin, M. & Hugot, J. Two centuries of bilateral trade and gravity data: 1827-2014 (No. 015129) (Universidad Javeriana-Bogotá, 2016).
United Nations General Assembly Resolution 1514.
Lichstein JW. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 2007;188:117–131.
Bivand RS, Wong DWS. Comparing implementations of global and local indicators of spatial association. Test. 2018;27:716–748.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).
Global proliferation of nonnative plants is a major driver of insect invasions
Plant invasion and naturalization are influenced by genome size, ecology and economic use globally
A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
The poleward naturalization of intracontinental alien plants