Persistent soil seed banks promote naturalisation and invasiveness in flowering plants

. 2021 Aug ; 24 (8) : 1655-1667. [epub] 20210524

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34031959

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
I 3757-B29 Austrian Science Fund
DFG FZT 118 Deutsche Forschungsgemeinschaft
202548816 Deutsche Forschungsgemeinschaft
19-20405S Grantová Agentura České Republiky
19-28807X Grantová Agentura České Republiky

With globalisation facilitating the movement of plants and seeds beyond the native range, preventing potentially harmful introductions requires knowledge of what drives the successful establishment and spread of alien plants. Here, we examined global-scale relationships between naturalisation success (incidence and extent) and invasiveness, soil seed bank properties (type and densities) and key species traits (seed mass, seed dormancy and life form) for 2350 species of angiosperms. Naturalisation and invasiveness were strongly associated with the ability to form persistent (vs. transient) seed banks but relatively weakly with seed bank densities and other traits. Our findings suggest that seed bank persistence is a trait that better captures the ability to become naturalised and invasive compared to seed traits more widely available in trait databases. Knowledge of seed persistence can contribute to our ability to predict global naturalisation and invasiveness and to identify potentially invasive flowering plants before they are introduced.

Zobrazit více v PubMed

Adams, V.M., Marsh, D.M. & Knox, J.S. (2005) Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biological Conservation, 124, 425–436. 10.1016/j.biocon.2005.02.001 DOI

Alexander, J.M. & D’Antonio, C.M. (2003) Seed bank dynamics of French broom in coastal California grasslands: Effects of stand age and prescribed burning on control and restoration. Restoration Ecology, 11, 185–197. 10.1046/j.1526-100X.2003.00169.x DOI

Anderson, L.G., Rocliffe, S., Haddaway, N.R. & Dunn, A.M. (2015) The role of tourism and recreation in the spread of non‐native species: A systematic review and meta‐analysis. PLoS One, 10, e0140833. 10.1371/journal.pone.0140833 PubMed DOI PMC

Bakker, J., Poschlod, P., Strykstra, R., Bekker, R. & Thompson, K. (1996) Seed banks and seed dispersal: Important topics in restoration ecology. Acta Botanica Neerlandica, 45, 461–490. 10.1111/j.1438-8677.1996.tb00806.x DOI

Baskin, C.C. & Baskin, J.M. (2014) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press.

Baskin, J.M. & Baskin, C.C. (1985) Does seed dormancy play a role in the germination ecology of Rumex crispus? Weed Science, 33, 340–343. 10.1017/S0043174500082382 DOI

Bekker, R.m., Bakker, J.p., Grandin, U., Kalamees, R., Milberg, P., Poschlod, P. et al. (1998) Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Functional Ecology, 12, 834–842. 10.1046/j.1365-2435.1998.00252.x DOI

Blossey, B., Nuzzo, V. & Davalos, A. (2017) Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. Journal of Ecology, 105, 1485–1495. 10.1111/1365-2745.12854 DOI

Bradley, B.A., Blumenthal, D.M., Early, R., Grosholz, E.D., Lawler, J.J., Miller, L.P. et al. (2012) Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 10, 20–28. 10.1890/110145 DOI

Buckley, Y.M., Downey, P., Fowler, S.V., Hill, R., Memmot, J., Norambuena, H. et al. (2003) Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology, 84, 1434–1440. 10.1890/0012-9658 DOI

Cadotte, M.W., Murray, B.R. & Lovett‐Doust, J. (2006) Ecological patterns and biological invasions: Using regional species inventories in macroecology. Biological Invasions, 8, 809–821. 10.1007/s10530-005-3839-4 DOI

Chesson, P.L. & Warner, R.R. (1981) Environmental variability promotes coexistence in lottery competitive systems. American Naturalist, 117, 923–943. 10.1086/283778 DOI

Childs, D.Z., Metcalf, C.J.E. & Rees, M. (2010) Evolutionary bet‐hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences, 277, 3055–3064. PubMed PMC

Clarke, P.J., Lawes, M.J., Midgley, J.J., Lamont, B.B., Ojeda, F., Burrows, G.E. et al. (2013) Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197, 19–35. 10.1111/nph.12001 PubMed DOI

Cohen, D. (1966) Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology, 12, 119–129. PubMed

Correia, M., Montesinos, D., French, K. & Rodríguez‐Echeverría, S. (2016) Evidence for enemy release and increased seed production and size for two invasive Australian acacias. Journal of Ecology, 104, 1391–1399.

D’Antonio, C.M., Dudley, T.L. & Mack, M.C. (1999) Disturbance and biological invasions: Direct effects and feedbacks. In: Walker, L. (Ed.) Ecosystems of disturbed ground. Oxford: Elsevier, pp. 413–452.

Davis, M.A., Grime, J.P. & Thompson, K. (2000) Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528–534. 10.1046/j.1365-2745.2000.00473.x DOI

de Villemereuil, P. & Nakagawa, S. (2014) General quantitative genetic methods for comparative biology. In: Garamszegi, L.Z. (Ed.) Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin: Springer‐Verlag, pp. 287–303.

Donohue, K., Dorn, L., Griffith, C., Kim, E., Aguilera, A., Polisetty, C.R. et al. (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: Variable natural selection on germination timing. Evolution, 59, 758–770. 10.1111/j.0014-3820.2005.tb01751.x PubMed DOI

Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C.G. (2010) Germination, post‐germination adaptation, and species ecological ranges. Annual Review of Ecology Evolution and Systematics, 41, 293–319. 10.1146/annurev-ecolsys-102209-144715 DOI

Feng, Y., Maurel, N., Wang, Z., Ning, L., Yu, F.‐H. & van Kleunen, M. (2016) Introduction history, climatic suitability, native range size, species traits and their interactions explain establishment of Chinese woody species in Europe. Global Ecology and Biogeography, 25, 1356–1366. 10.1111/geb.12497 DOI

Fenner, M. & Thompson, K. (2005) The ecology of seeds. Cambridge: Cambridge University Press.

Funk, J.L., Standish, R.J., Stock, W.D. & Valladares, F. (2016) Plant functional traits of dominant native and invasive species in Mediterranean‐climate ecosystems. Ecology, 97, 75–83. 10.1890/15-0974.1 PubMed DOI

Gallagher, R.V., Randall, R.P. & Leishman, M.R. (2015) Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conservation Biology, 29, 360–369. PubMed PMC

Gallien, L., Thornhill, A.H., Zurell, D., Miller, J.T. & Richardson, D.M. (2019) Global predictors of alien plant establishment success: Combining niche and trait proxies. Proceedings of the Royal Society B, 286, 20182477. 10.1098/rspb.2018.2477 PubMed DOI PMC

Gioria, M., Dieterich, B. & Osborne, B.A. (2011) Battle of the giants: Primary and secondary invasions by large herbaceous species. Environmental Biology, 111B, 177–193. https://www.jstor.org/stable/23188047

Gioria, M., Le Roux, J.J., Hirsch, H., Moravcová, L. & Pyšek, P. (2019) Characteristics of the soil seed bank of invasive and non‐invasive plants in their native and alien distribution range. Biological Invasions, 21, 2313–2332. 10.1007/s10530-019-01978-y DOI

Gioria, M. & Osborne, B.A. (2014) Resource competition in plant invasions: Emerging patterns and research needs. Frontiers in Plant Science, 5, 1–21. 10.3389/fpls.2014.00501 PubMed DOI PMC

Gioria, M. & Pyšek, P. (2016) The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. BioScience, 66, 40–53. 10.1093/biosci/biv165 DOI

Gioria, M. & Pyšek, P. (2017) Early bird catches the worm: Germination as a critical step in plant invasion. Biological Invasions, 19, 1055–1080. 10.1007/s10530-016-1349-1 DOI

Gioria, M., Pyšek, P., Baskin, C.C. & Carta, A. (2020) Phylogenetic relatedness mediates persistence and density of soil seed banks. Journal of Ecology, 108, 2121–2131. 10.1111/1365-2745.13437 DOI

Gioria, M., Pyšek, P. & Moravcová, L. (2012) Soil seed banks in plant invasions: Promoting species invasiveness and long‐term impact on plant community dynamics. Preslia, 84, 327–350.

Gioria, M., Pyšek, P. & Osborne, B.A. (2018) Timing is everything: Does early and late germination favor invasions by herbaceous alien plants? Journal of Plant Ecology, 11, 4–16. 10.1093/jpe/rtw105 DOI

Grace, J.B. (2006) Structural equation modeling and natural systems. Cambridge: Cambridge University Press.

Grace, J.B. (2020) A ‘Weight of Evidence’ approach to evaluating structural equation models. One Ecosystem, 5, e50452. 10.3897/oneeco.5.e50452 DOI

Grace, J.B. & Bollen, K.A. (2005) Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86, 283–295.

Grace, J.B. & Irvine, K.M. (2020) Scientist’s guide to developing explanatory statistical models using causal analysis principles. Ecology, 101, e02962. 10.1002/ecy.2962 PubMed DOI

Garamszegi, L.Z. (2014) Uncertainties due to within‐species variation in comparative studies: Measurement errors and statistical weights. In: Garamszegi, L.Z. (Ed.) Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin: Springer‐Verlag, pp. 157–199.

Gremer, J.R. & Venable, D.L. (2014) Bet hedging in desert winter annual plants: Optimal germination strategies in a variable environment. Ecology Letters, 17, 380–387. 10.1111/ele.12241 PubMed DOI

Grime, J.P. (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edition. Oxford: John Wiley & Sons.

Hadfield, J.D. (2010) MCMC methods for multi‐response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33, 1–22. PubMed PMC

Hadfield, J.D. & Nakagawa, S. (2010) General quantitative genetic methods for comparative biology: Phylogenies taxonomies and multi‐trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494–508. 10.1111/j.1420-9101.2009.01915.x PubMed DOI

Hamilton, M.A., Murray, B.R., Cadotte, M.W., Hose, G.C., Baker, A.C., Harris, C.J. et al. (2005) Life‐history correlates of plant invasiveness at regional and continental scales. Ecology Letters, 8, 1066–1074. 10.1111/j.1461-0248.2005.00809.x DOI

Harper, J. (1977) The population biology of plants. London: Academic Press.

Hierro, J.L., Eren, Ö., Montesinos, D., Andonian, K., Kethsuriani, L., Özcan, R. et al. (2020) Increments in weed seed size track global range expansion and contribute to colonization in a non‐native region. Biological Invasions, 22, 969–982. 10.1007/s10530-019-02137-z DOI

Hierro, J.L., Maron, J.L. & Callaway, R.M. (2005) A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15. 10.1111/j.0022-0477.2004.00953.x DOI

Hierro, J.L., Villarreal, D., Eren, Ö., Graham, J.M. & Callaway, R.M. (2006) Disturbance facilitates invasion: The effects are stronger abroad than at home. American Naturalist, 168, 144–156. 10.1086/505767 PubMed DOI

Honnay, O. & Bossuyt, B. (2005) Prolonged clonal growth: Escape route or route to extinction? Oikos, 108, 427–432.

Howe, H.F. & Smallwood, J. (1992) Ecology of seed dispersal. Annual Review of Ecology, Evolution, and Systematics, 13, 201–228. 10.1146/annurev.es.13.110182.001221 DOI

Hulme, P.E. (1998) Post‐dispersal seed predation: Consequences for plant demography and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 1, 32–46. 10.1078/1433-8319-00050 DOI

Humair, F., Humair, L., Kuhn, F. & Kueffer, C. (2015) E‐commerce trade in invasive plants. Conservation Biology, 29, 1658–1665. 10.1111/cobi.12579 PubMed DOI

Jin, Y. & Qian, H. (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353–1359. 10.1111/ecog.04434 PubMed DOI PMC

Kew, R.B.G. (2020) Seed Information Database (SID). Version 7.1. Available at: http://data.kew.org/sid/

Kline, R.B. (2016) Principles and practice of structural equation modeling, 4th edition. New York: Guilford Press.

Kudoh, H., Nakayama, M., Lihová, J. & Marhold, K. (2007) Does invasion involve alternation of germination requirements? A comparative study between native and introduced strains of an annual Brassicaceae, Cardamine hirsuta . Ecological Research, 22, 869–875.

Lachaise, T., Bergmann, J., Rillig, M.C. & van Kleunen, M. (2021) Below‐ and aboveground traits explain local abundance, and regional, continental and global occurrence frequencies of grassland plants. Oikos, 130, 110–120. 10.1111/oik.07874 DOI

Larson, J.E. & Funk, J.L. (2016) Regeneration: An overlooked aspect of trait‐based plant community assembly models. Journal of Ecology, 104, 1284–1298. 10.1111/1365-2745.12613 DOI

Lavoie, C., Joly, S., Bergeron, A., Guay, G. & Groeneveld, E. (2016) Explaining naturalization and invasiveness: New insights from historical ornamental plant catalogs. Ecology and Evolution, 6, 7188–7198. PubMed PMC

Leishman, M.R. & Westoby, M. (1998) Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Functional Ecology, 12, 480–485. 10.1046/j.1365-2435.1998.00215.x DOI

Long, R.L., Gorecki, M.J., Renton, M., Scott, J.K., Colville, L., Goggin, D.E. et al. (2015) The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biological Reviews of the Cambridge Philosophical Society, 90, 31–59. 10.1111/brv.12095 PubMed DOI

Long, R.L., Panetta, F.D., Steadman, K.J., Probert, R., Bekker, R.M., Brooks, S. et al. (2008) Seed persistence in the field may be predicted by laboratory‐controlled aging. Weed Science, 56, 523–528. 10.1614/WS-07-189.1 DOI

Mandák, B., Zákravský, P., Mahelka, V. & Plačková, I. (2012) Can soil seed banks serve as genetic memory? A study of three species with contrasting life history strategies. PLoS One, 7, e49471. 10.1371/journal.pone.0049471 PubMed DOI PMC

Maron, J.L., Vilà, M., Bommarco, R., Elmendorf, S.C. & Beardsley, P. (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74, 260–280. 10.1890/03-4027 DOI

Meyerson, L.A. & Mooney, H.A. (2007) Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5, 199–208. 10.1890/1540-9295 DOI

Moles, A.T., Falster, D.S. & Leishman, M.R. (2004) Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology, 92, 384–396.

Moles, A.T., Hodson, D.W. & Webb, C.J. (2000) Seed size and shape and persistence in the soil in the New Zealand flora. Oikos, 89, 541–545. 10.1034/j.1600-0706.2000.890313.x DOI

Moles, A.T. & Westoby, M. (2006) Seed size and plant strategy across the whole life cycle. Oikos, 113, 91–105. 10.1111/j.0030-1299.2006.14194.x DOI

Moodley, D., Geerts, S., Richardson, D.M. & Wilson, J.R.U. (2013) Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS One, 8, e75078. 10.1371/journal.pone.0075078 PubMed DOI PMC

Pake, C.E. & Venable, D.L. (1996) Seed banks in desert annuals: Implications for persistence and coexistence in variable environments. Ecology, 77, 1427–1435. 10.2307/2265540 DOI

Pichancourt, J.‐B. & van Klinken, R. (2012) Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant. PLoS One, 7, e32323. 10.1371/journal.pone.0032323 PubMed DOI PMC

Pyšek, P., Køivánek, M. & Jarošík, V. (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology, 90, 2734–2744. PubMed

Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T. et al. (2020) Scientists’ warning on invasive alien species. Biological Reviews, 95, 1511–1534. 10.1111/brv.12627 PubMed DOI PMC

Pyšek, P., Manceur, A.M., Alba, C., McGregor, K.F., Pergl, J., Štajerová, K. et al. (2015) Naturalization of central European plant species in North America: Species traits, habitats, propagule pressure, residence time. Ecology, 96, 145–157. 10.1890/14-1005.1 PubMed DOI

Pyšek, P., Pergl, J., Essl, F., Lenzner, B., Dawson, W., Kreft, H. et al. (2017) Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89, 203–274. 10.23855/preslia.2017.203 DOI

Pyšek, P. & Richardson, D.M. (2007) Traits associated with invasiveness in alien plants: Where do we stand? In: Nentwig, W. (Ed.) Biological invasions. Berlin: Springer, pp. 97–125.

R Development Core Team (2020) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rees, M. & Long, M. (1992) Germination biology and the ecology of annual plants. American Naturalist, 139, 484–508. 10.1086/285340 DOI

Richardson, D.M. & Pyšek, P. (2012) Naturalization of introduced plants: Ecological drivers of biogeographical patterns. New Phytologist, 196, 383–396. 10.1111/j.1469-8137.2012.04292.x PubMed DOI

Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M., Panetta, F. & West, C. (2000) Naturalization and invasion of alien plants: Concepts and definitions. Diversity Distributions, 6, 93–107. 10.1046/j.1472-4642.2000.00083.x DOI

Robertson, S.G. & Hickman, K.R. (2012) Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecology, 213, 1461–1475. 10.1007/s11258-012-0104-7 DOI

Rosseel, Y. (2012) lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48, 1–36 Available at: http://www.jstatsoft.org/v48/i02/

Salisbury, E.J. (1942) The reproductive capacity of plants. London: Bell.

Schmidt, J.P. & Drake, J.M. (2011) Time since introduction, seed mass, and genome size predict successful invaders among the cultivated vascular plants of Hawaii. PLoS One, 6(3), e17391. 10.1371/journal.pone.0017391 PubMed DOI PMC

Simberloff, D. (2014) Biological invasions: What’s worth fighting and what can be won? Ecological Engineering, 65, 112–121. 10.1016/j.ecoleng.2013.08.004 DOI

Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. (2019) Seed‐bank dynamics of native and invasive Impatiens species during a five‐year field experiment under various environmental conditions. NeoBiota, 50, 75–95.

Smith, S.A. & Brown, J.W. (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. 10.1002/ajb2.1019 PubMed DOI

Templeton, A. & Levin, D. (1979) Evolutionary consequences of seed pools. American Naturalist, 114, 232–249. 10.1086/283471 DOI

Thompson, K., Bakker, J.P. & Bekker, R.M. (1997) Soil seed banks of NW Europe: Methodology, density and longevity. Cambridge: Cambridge University Press.

Thompson, K., Bakker, J.P., Bekker, R.M. & Hodgson, J. (1998) Ecological correlates of seed persistence in soil in the north‐west European flora. Journal of Ecology, 86, 163–169. 10.1046/j.1365-2745.1998.00240.x DOI

Thompson, K., Band, S. & Hodgson, J. (1993) Seed size and shape predict persistence in soil. Functional Ecology, 7, 236–241.

Thompson, K., Ceriani, R.M., Bakker, J.P. & Bekker, R.M. (2003) Are seed dormancy and persistence in soil related? Seed Science Philosophy and Phenomenological Research, 13, 97–100. 10.1079/SSR2003128 DOI

Udo, N., Tarayre, M. & Atlan, A. (2017) Evolution of germination strategy in the invasive species Ulex europaeus . Journal of Plant Ecology, 10, 375–385.

van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E. et al. (2015) Global exchange and accumulation of non‐native plants. Nature, 525, 100–103. 10.1038/nature14910 PubMed DOI

van Kleunen, M., Pyšek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J. et al. (2019) The Global Naturalized Alien Flora (GloNAF) database. Ecology, 100, e02542. 10.1002/ecy.2542 PubMed DOI

Venable, D.L. (2007) Bet hedging in a guild of desert annuals. Ecology, 88, 1086–1090. 10.1890/06-1495 PubMed DOI

Venable, D.L. & Brown, J.S. (1988) The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. American Naturalist, 131, 360–384. 10.1086/284795 DOI

Walck, J.L., Baskin, J.M., Baskin, C.C. & Hidayati, S.N. (2005) Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research, 15, 189–196. 10.1079/SSR2005209 DOI

Warr, S.J., Thompson, K. & Kent, M. (1993) Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progress in Physical Geography: Earth and Environment, 17, 329–347. 10.1177/030913339301700303 DOI

Willis, C.G., Baskin, C.C., Baskin, J.M., Auld, J.R., Venable, D.L., Cavender‐Bares, J. et al. (2014) The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist, 203, 300–309. 10.1111/nph.12782 PubMed DOI

Wilson, J.R., Panetta, F.D. & Lindgren, C. (2017) Detecting and responding to alien plant incursions. Cambridge: Cambridge University Press.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...