The impact of land use on non-native species incidence and number in local assemblages worldwide

. 2023 Apr 12 ; 14 (1) : 2090. [epub] 20230412

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37045818
Odkazy

PubMed 37045818
PubMed Central PMC10097616
DOI 10.1038/s41467-023-37571-0
PII: 10.1038/s41467-023-37571-0
Knihovny.cz E-zdroje

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.

Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904 0495 Japan

Biodiversity Macroecology and Biogeography University of Göttingen Büsgenweg 1 D 37077 Göttingen Germany

Campus Institut Data Science University of Göttingen Goldschmidtstraße 1 D 37077 Göttingen Germany

Centre for Biodiversity and Environment Research Department of Genetics Evolution and Environment University College London London UK

Centre of Biodiversity and Sustainable Land Use University of Göttingen Büsgenweg 1 D 37077 Göttingen Germany

Centro de Estudos Geográficos Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa Lisboa Portugal

Czech Academy of Sciences Institute of Botany Department of Invasion Ecology CZ 252 43 Průhonice Czech Republic

Department of Arctic Biology UNIS The University Centre in Svalbard 9171 Longyearbyen Norway

Department of Biosciences Durham University South Road Durham DH1 3LE UK

Department of Botany and Biodiversity Research University of Vienna Rennweg 14 1030 Vienna Austria

Department of Ecology Faculty of Science Charles University Viničná 7 CZ 128 44 Prague Czech Republic

Department of Life Sciences Imperial College London Ascot SL5 7PY UK

Department of Life Sciences Natural History Museum London SW7 5BD UK

Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D 78457 Konstanz Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Global Mammal Assessment programme Dipartimento di Biologia e Biotecnologie Charles Darwin Sapienza Università di Roma Rome Italy

Insect Biodiversity and Biogeography Laboratory School of Biological Sciences The University of Hong Kong Pok Fu Lam Rd Lung Fu Shan Hong Kong SAR China

Institute of Ecology and Evolution University of Bern Baltzerstrasse 6 CH 3012 Bern Switzerland

Institute of Zoology Zoological Society of London London UK

Invasion Science and Wildlife Ecology Lab School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia

Laboratório Associado TERRA Tapada da Ajuda 1349 017 Lisboa Portugal

National Research Council of Italy Institute for Bioeconomy Via dei Taurini 19 Rome Italy

Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA

Research Department of Genetics Evolution and Environment University College London London UK

Senckenberg Biodiversity and Climate Research Centre Senckenberganlage 25 60325 Frankfurt Germany

UK Centre for Ecology and Hydrology Wallingford UK

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou 318000 China

Zobrazit více v PubMed

Maxwell SL, Fuller RA, Brooks TM, Watson JEM. Biodiversity: the ravages of guns, nets and bulldozers. Nature. 2016;536:143–145. doi: 10.1038/536143a. PubMed DOI

Díaz, S., Settele, J. & Brondízio, E. Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on the work of its seventh session. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Vol. 7, p. 45 (2019).

Newbold T, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. doi: 10.1038/nature14324. PubMed DOI

Tilman D, et al. Future threats to biodiversity and pathways to their prevention. Nature. 2017;546:73–81. doi: 10.1038/nature22900. PubMed DOI

Trisos CH, Merow C, Pigot AL. The projected timing of abrupt ecological disruption from climate change. Nature. 2020;580:496–501. doi: 10.1038/s41586-020-2189-9. PubMed DOI

Semenchuk P, et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 2022;13:615. doi: 10.1038/s41467-022-28245-4. PubMed DOI PMC

Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms14435. PubMed DOI PMC

Mazor T, et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2018;2:1071–1074. doi: 10.1038/s41559-018-0563-x. PubMed DOI

Outhwaite CL, McCann P, Newbold T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature. 2022;605:97–102. doi: 10.1038/s41586-022-04644-x. PubMed DOI

Watson JEM, et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016;26:2929–2934. doi: 10.1016/j.cub.2016.08.049. PubMed DOI

Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature. 2014;509:213–217. doi: 10.1038/nature13139. PubMed DOI

Chytrý M, et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 2008;45:448–458. doi: 10.1111/j.1365-2664.2007.01398.x. DOI

Lozon JD, Macisaac HJ. Biological invasions: are they dependent on disturbance? Environ. Rev. 1997;5:131–144. doi: 10.1139/a97-007. DOI

Pyšek P, et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020;95:1511–1534. doi: 10.1111/brv.12627. PubMed DOI PMC

Wang X, et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers Distrib. 2021;28:1610–1619. doi: 10.1111/ddi.13359. DOI

Redding DW, et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature. 2019;571:103–106. doi: 10.1038/s41586-019-1292-2. PubMed DOI PMC

van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. doi: 10.1038/nature14910. PubMed DOI

Vellend M, et al. Plant biodiversity change across scales during the Anthropocene. Annu Rev. Plant Biol. 2017;68:563–586. doi: 10.1146/annurev-arplant-042916-040949. PubMed DOI

Chytrý M, et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 2012;21:75–87. doi: 10.1111/j.1466-8238.2010.00573.x. DOI

Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 2007;22:489–496. doi: 10.1016/j.tree.2007.07.001. PubMed DOI

Vilà M, et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011;14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x. PubMed DOI

Pyšek P, et al. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010;19:317–331. doi: 10.1111/j.1466-8238.2009.00514.x. DOI

Chytrý M, et al. Europea map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib. 2009;21:1215–1221.

Kalusová V, Chytry´ M, Peet RK, Wentworth TR. Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology. 2015;96:3363–337. doi: 10.1890/15-0021.1. PubMed DOI

Kalusová V, et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA. 2017;114:13756–13761. doi: 10.1073/pnas.1705487114. PubMed DOI PMC

Hudson LN, et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 2014;4:4701–4735. doi: 10.1002/ece3.1303. PubMed DOI PMC

Hudson LN, et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 2017;7:145–188. doi: 10.1002/ece3.2579. PubMed DOI PMC

Williamson M, et al. The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Divers Distrib. 2009;15:158–166. doi: 10.1111/j.1472-4642.2008.00528.x. DOI

Seebens H, et al. Around the world in 500 years: Inter-regional spread of alien species over recent centuries. Glob. Ecol. Biogeogr. 2021;30:1621–1632. doi: 10.1111/geb.13325. DOI

Essl F, et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA. 2011;108:203–207. doi: 10.1073/pnas.1011728108. PubMed DOI PMC

Biancolini D, et al. DAMA: the global Distribution of Alien Mammals database. Ecology. 2021;102:e03474. doi: 10.1002/ecy.3474. PubMed DOI

Clout MN, Russell JC. The invasion ecology of mammals: a global perspective. Wildl. Res. 2008;35:180–184. doi: 10.1071/WR07091. DOI

Brockerhoff EG, Liebhold AM. Ecology of forest insect invasions. Biol. Invasions. 2017;19:3141–3159. doi: 10.1007/s10530-017-1514-1. DOI

Guo WY, et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 2018;21:1380–1389. doi: 10.1111/ele.13104. PubMed DOI

Alpert P, Bone E, Holzapfel C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 2000;3:52–66. doi: 10.1078/1433-8319-00004. DOI

Davis MA, Grime JP, Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 2000;88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x. DOI

Lonsdale WM. Global patterns of plant invasions and the concept of invasibility. Ecology. 1999;80:1522–1536. doi: 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2. DOI

Sánchez-Ortiz K, et al. Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE. 2020;15:e0227169. doi: 10.1371/journal.pone.0227169. PubMed DOI PMC

Jeschke JM, et al. Taxonomic bias and lack of cross-taxonomic studies in invasion biology. Front. Ecol. Environ. 2012;10:349–350. doi: 10.1890/12.WB.016. DOI

Pyšek P, et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 2008;23:237–244. doi: 10.1016/j.tree.2008.02.002. PubMed DOI

Davis MA, Thompson K. Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 2000;81:226–230.

van Kleunen M, et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018;93:1421–1437. doi: 10.1111/brv.12402. PubMed DOI

Csecserits A, et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric Ecosyst. Environ. 2016;226:88–98. doi: 10.1016/j.agee.2016.03.024. DOI

Stohlgren TJ, Barnett DT, Kartesz JT. The rich get richer: patterns of plant invasions in the United States. Front. Ecol. Environ. 2003;1:11–14. doi: 10.1890/1540-9295(2003)001[0011:TRGRPO]2.0.CO;2. DOI

Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:1–7. doi: 10.1038/s41559-017-0186. PubMed DOI

Liu X, et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020;11:2892. doi: 10.1038/s41467-020-16719-2. PubMed DOI PMC

Dyer EE, et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 2017;15:e2000942. doi: 10.1371/journal.pbio.2000942. PubMed DOI PMC

Hendershot JN, et al. Intensive farming drives long-term shifts in avian community composition. Nature. 2020;579:393–396. doi: 10.1038/s41586-020-2090-6. PubMed DOI

Pfeiffer M, Cheng Tuck H, Chong Lay T. Exploring arboreal ant community composition and co-occurrence patterns in plantations of oil palm Elaeis guineensis in Borneo and Peninsular Malaysia. Ecography. 2008;31:21–32. doi: 10.1111/j.2007.0906-7590.05172.x. DOI

Kobelt M, Nentwig W. Alien spider introductions to Europe supported by global trade. Divers. Distrib. 2008;14:273–280. doi: 10.1111/j.1472-4642.2007.00426.x. DOI

Shukla, P. R. Climate Change and Land: an IPCC Special Report On Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems (2019 Intergovernmental Panel on Climate Change, 2019).

Vimercati G, Kumschick S, Probert AF, Volery L, Bacher S. The importance of assessing positive and beneficial impacts of alien species. NeoBiota. 2020;62:525. doi: 10.3897/neobiota.62.52793. DOI

Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 2021;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI

Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. doi: 10.1038/s41586-021-03405-6. PubMed DOI

Guénard B, Weiser MD, Gómez K, Nitish Narula S, Economo EP. The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae) Myrmecol. News. 2017;24:83–89.

Miller JA, et al. Integrating and visualizing primary data from prospective and legacy taxonomic literature. Biodivers. Data J. 2015;3:e5063. doi: 10.3897/BDJ.3.e5063. PubMed DOI PMC

van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:e02542. doi: 10.1002/ecy.2542. PubMed DOI

Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions Edition 2. Group (2001).

Banki O, Hobern D, Döring M, Remsen D. Catalogue of Life Plus: a collaborative project to complete the checklist of the world’s species. Biodivers. Inf. Sci. Stand. 2019;3:e37652.

Chamberlain, S. Package ‘rcol’ Title Catalogue of Life Client.R package version 0.2.1 https://github.com/ropensci-archive/rcol (2021).

Lenth RV. Population marginal means in the linear model: an alternative to least squares means. Am. Stati. 1980;34:216–221.

Bates D, et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Hartig, F. Package ‘DHARMa’ Title Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. http://CRAN.R-project.org/package=DHARMa (2022).

Brooks, et al. Package ‘glmmTMB’ Title Generalized Linear Mixed Models using Template Model Builder. The R Journal, 9, 378–400(2022).

Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods. 2006;11:54. doi: 10.1037/1082-989X.11.1.54. PubMed DOI

Olson DM, et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI

Weigelt P, Jetz W, Kreft H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA. 2013;110:15307–15312. doi: 10.1073/pnas.1306309110. PubMed DOI PMC

Wickham, et al. ‘ggplot2: Create Elegant Data Visualisations Using The Grammar Of Graphics, R package, version 3.4.1https://ggplot2.tidyverse.org/ (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...