The impact of land use on non-native species incidence and number in local assemblages worldwide
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37045818
PubMed Central
PMC10097616
DOI
10.1038/s41467-023-37571-0
PII: 10.1038/s41467-023-37571-0
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- Formicidae * MeSH
- incidence MeSH
- savci MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.
Campus Institut Data Science University of Göttingen Goldschmidtstraße 1 D 37077 Göttingen Germany
Department of Arctic Biology UNIS The University Centre in Svalbard 9171 Longyearbyen Norway
Department of Biosciences Durham University South Road Durham DH1 3LE UK
Department of Botany and Biodiversity Research University of Vienna Rennweg 14 1030 Vienna Austria
Department of Life Sciences Imperial College London Ascot SL5 7PY UK
Department of Life Sciences Natural History Museum London SW7 5BD UK
Ecology Department of Biology University of Konstanz Universitätsstrasse 10 D 78457 Konstanz Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Ecology and Evolution University of Bern Baltzerstrasse 6 CH 3012 Bern Switzerland
Institute of Zoology Zoological Society of London London UK
Laboratório Associado TERRA Tapada da Ajuda 1349 017 Lisboa Portugal
National Research Council of Italy Institute for Bioeconomy Via dei Taurini 19 Rome Italy
Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
Research Department of Genetics Evolution and Environment University College London London UK
Senckenberg Biodiversity and Climate Research Centre Senckenberganlage 25 60325 Frankfurt Germany
Zobrazit více v PubMed
Maxwell SL, Fuller RA, Brooks TM, Watson JEM. Biodiversity: the ravages of guns, nets and bulldozers. Nature. 2016;536:143–145. doi: 10.1038/536143a. PubMed DOI
Díaz, S., Settele, J. & Brondízio, E. Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on the work of its seventh session. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Vol. 7, p. 45 (2019).
Newbold T, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50. doi: 10.1038/nature14324. PubMed DOI
Tilman D, et al. Future threats to biodiversity and pathways to their prevention. Nature. 2017;546:73–81. doi: 10.1038/nature22900. PubMed DOI
Trisos CH, Merow C, Pigot AL. The projected timing of abrupt ecological disruption from climate change. Nature. 2020;580:496–501. doi: 10.1038/s41586-020-2189-9. PubMed DOI
Semenchuk P, et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 2022;13:615. doi: 10.1038/s41467-022-28245-4. PubMed DOI PMC
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms14435. PubMed DOI PMC
Mazor T, et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2018;2:1071–1074. doi: 10.1038/s41559-018-0563-x. PubMed DOI
Outhwaite CL, McCann P, Newbold T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature. 2022;605:97–102. doi: 10.1038/s41586-022-04644-x. PubMed DOI
Watson JEM, et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016;26:2929–2934. doi: 10.1016/j.cub.2016.08.049. PubMed DOI
Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature. 2014;509:213–217. doi: 10.1038/nature13139. PubMed DOI
Chytrý M, et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 2008;45:448–458. doi: 10.1111/j.1365-2664.2007.01398.x. DOI
Lozon JD, Macisaac HJ. Biological invasions: are they dependent on disturbance? Environ. Rev. 1997;5:131–144. doi: 10.1139/a97-007. DOI
Pyšek P, et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020;95:1511–1534. doi: 10.1111/brv.12627. PubMed DOI PMC
Wang X, et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers Distrib. 2021;28:1610–1619. doi: 10.1111/ddi.13359. DOI
Redding DW, et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature. 2019;571:103–106. doi: 10.1038/s41586-019-1292-2. PubMed DOI PMC
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. doi: 10.1038/nature14910. PubMed DOI
Vellend M, et al. Plant biodiversity change across scales during the Anthropocene. Annu Rev. Plant Biol. 2017;68:563–586. doi: 10.1146/annurev-arplant-042916-040949. PubMed DOI
Chytrý M, et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 2012;21:75–87. doi: 10.1111/j.1466-8238.2010.00573.x. DOI
Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 2007;22:489–496. doi: 10.1016/j.tree.2007.07.001. PubMed DOI
Vilà M, et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011;14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x. PubMed DOI
Pyšek P, et al. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010;19:317–331. doi: 10.1111/j.1466-8238.2009.00514.x. DOI
Chytrý M, et al. Europea map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib. 2009;21:1215–1221.
Kalusová V, Chytry´ M, Peet RK, Wentworth TR. Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology. 2015;96:3363–337. doi: 10.1890/15-0021.1. PubMed DOI
Kalusová V, et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA. 2017;114:13756–13761. doi: 10.1073/pnas.1705487114. PubMed DOI PMC
Hudson LN, et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 2014;4:4701–4735. doi: 10.1002/ece3.1303. PubMed DOI PMC
Hudson LN, et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 2017;7:145–188. doi: 10.1002/ece3.2579. PubMed DOI PMC
Williamson M, et al. The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Divers Distrib. 2009;15:158–166. doi: 10.1111/j.1472-4642.2008.00528.x. DOI
Seebens H, et al. Around the world in 500 years: Inter-regional spread of alien species over recent centuries. Glob. Ecol. Biogeogr. 2021;30:1621–1632. doi: 10.1111/geb.13325. DOI
Essl F, et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA. 2011;108:203–207. doi: 10.1073/pnas.1011728108. PubMed DOI PMC
Biancolini D, et al. DAMA: the global Distribution of Alien Mammals database. Ecology. 2021;102:e03474. doi: 10.1002/ecy.3474. PubMed DOI
Clout MN, Russell JC. The invasion ecology of mammals: a global perspective. Wildl. Res. 2008;35:180–184. doi: 10.1071/WR07091. DOI
Brockerhoff EG, Liebhold AM. Ecology of forest insect invasions. Biol. Invasions. 2017;19:3141–3159. doi: 10.1007/s10530-017-1514-1. DOI
Guo WY, et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 2018;21:1380–1389. doi: 10.1111/ele.13104. PubMed DOI
Alpert P, Bone E, Holzapfel C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 2000;3:52–66. doi: 10.1078/1433-8319-00004. DOI
Davis MA, Grime JP, Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 2000;88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x. DOI
Lonsdale WM. Global patterns of plant invasions and the concept of invasibility. Ecology. 1999;80:1522–1536. doi: 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2. DOI
Sánchez-Ortiz K, et al. Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE. 2020;15:e0227169. doi: 10.1371/journal.pone.0227169. PubMed DOI PMC
Jeschke JM, et al. Taxonomic bias and lack of cross-taxonomic studies in invasion biology. Front. Ecol. Environ. 2012;10:349–350. doi: 10.1890/12.WB.016. DOI
Pyšek P, et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 2008;23:237–244. doi: 10.1016/j.tree.2008.02.002. PubMed DOI
Davis MA, Thompson K. Eight ways to be a colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 2000;81:226–230.
van Kleunen M, et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018;93:1421–1437. doi: 10.1111/brv.12402. PubMed DOI
Csecserits A, et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric Ecosyst. Environ. 2016;226:88–98. doi: 10.1016/j.agee.2016.03.024. DOI
Stohlgren TJ, Barnett DT, Kartesz JT. The rich get richer: patterns of plant invasions in the United States. Front. Ecol. Environ. 2003;1:11–14. doi: 10.1890/1540-9295(2003)001[0011:TRGRPO]2.0.CO;2. DOI
Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:1–7. doi: 10.1038/s41559-017-0186. PubMed DOI
Liu X, et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020;11:2892. doi: 10.1038/s41467-020-16719-2. PubMed DOI PMC
Dyer EE, et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 2017;15:e2000942. doi: 10.1371/journal.pbio.2000942. PubMed DOI PMC
Hendershot JN, et al. Intensive farming drives long-term shifts in avian community composition. Nature. 2020;579:393–396. doi: 10.1038/s41586-020-2090-6. PubMed DOI
Pfeiffer M, Cheng Tuck H, Chong Lay T. Exploring arboreal ant community composition and co-occurrence patterns in plantations of oil palm Elaeis guineensis in Borneo and Peninsular Malaysia. Ecography. 2008;31:21–32. doi: 10.1111/j.2007.0906-7590.05172.x. DOI
Kobelt M, Nentwig W. Alien spider introductions to Europe supported by global trade. Divers. Distrib. 2008;14:273–280. doi: 10.1111/j.1472-4642.2007.00426.x. DOI
Shukla, P. R. Climate Change and Land: an IPCC Special Report On Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems (2019 Intergovernmental Panel on Climate Change, 2019).
Vimercati G, Kumschick S, Probert AF, Volery L, Bacher S. The importance of assessing positive and beneficial impacts of alien species. NeoBiota. 2020;62:525. doi: 10.3897/neobiota.62.52793. DOI
Seebens H, et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 2021;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI
Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. doi: 10.1038/s41586-021-03405-6. PubMed DOI
Guénard B, Weiser MD, Gómez K, Nitish Narula S, Economo EP. The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae) Myrmecol. News. 2017;24:83–89.
Miller JA, et al. Integrating and visualizing primary data from prospective and legacy taxonomic literature. Biodivers. Data J. 2015;3:e5063. doi: 10.3897/BDJ.3.e5063. PubMed DOI PMC
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:e02542. doi: 10.1002/ecy.2542. PubMed DOI
Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions Edition 2. Group (2001).
Banki O, Hobern D, Döring M, Remsen D. Catalogue of Life Plus: a collaborative project to complete the checklist of the world’s species. Biodivers. Inf. Sci. Stand. 2019;3:e37652.
Chamberlain, S. Package ‘rcol’ Title Catalogue of Life Client.R package version 0.2.1 https://github.com/ropensci-archive/rcol (2021).
Lenth RV. Population marginal means in the linear model: an alternative to least squares means. Am. Stati. 1980;34:216–221.
Bates D, et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Hartig, F. Package ‘DHARMa’ Title Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. http://CRAN.R-project.org/package=DHARMa (2022).
Brooks, et al. Package ‘glmmTMB’ Title Generalized Linear Mixed Models using Template Model Builder. The R Journal, 9, 378–400(2022).
Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods. 2006;11:54. doi: 10.1037/1082-989X.11.1.54. PubMed DOI
Olson DM, et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Weigelt P, Jetz W, Kreft H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. USA. 2013;110:15307–15312. doi: 10.1073/pnas.1306309110. PubMed DOI PMC
Wickham, et al. ‘ggplot2: Create Elegant Data Visualisations Using The Grammar Of Graphics, R package, version 3.4.1https://ggplot2.tidyverse.org/ (2016).
Global proliferation of nonnative plants is a major driver of insect invasions