Risk Perception: Chemical Stimuli in Predator Detection and Feeding Behaviour of the Invasive Round Goby Neogobius melanostomus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38927286
PubMed Central
PMC11200450
DOI
10.3390/biology13060406
PII: biology13060406
Knihovny.cz E-zdroje
- Klíčová slova
- alarm cues, aquatic invasions, food consumption, gut evacuation rate, non-native species, predation efficiency, shreckstoff,
- Publikační typ
- časopisecké články MeSH
The round goby Neogobius melanostomus is a notoriously invasive fish originating from the Ponto-Caspian region that in recent decades has successfully spread across the globe. One of its primary impacts is direct predation; in addition, when entering new ecosystems, the round goby is likely to become a food resource for many higher native predators. However, little is known either about the indirect effects of predators on the round goby as prey or its feeding behaviour and activity. The non-consumptive effect of the presence of higher native predators presumably plays an important role in mitigating the impact of non-native round gobies as mesopredators on benthic invertebrate communities, especially when both higher- and mesopredators occupy the same habitat. We tested the food consumption probability and gut evacuation rates in round gobies in response to chemical signals from a higher predator, the European eel Anguilla anguilla. Gobies were placed individually in experimental arenas equipped with shelters and exposed to water from a tank in which (a) the higher predator had actively preyed on a heterospecific prey, earthworms Lumbricus sp. (the heterospecific treatment; HS); (b) the higher predator had fed on round gobies (the conspecific treatment; CS); or (c) the water was provided as a control treatment (C). To ensure exposure to the chemical stimuli, this study incorporated the application of skin extracts containing damaged-released alarm cues from the CS treatment; distilled water was used for the remaining treatments. No significant differences were observed in either the food consumption probability or gut evacuation rate in the tested treatments. Despite the lack of reaction to the chemical stimuli, round gobies did exhibit high evacuation rates (R = 0.2323 ± 0.011 h-1; mean ± SE) in which complete gut clearance occurred within 16 h regardless of the applied treatment. This rapid food processing suggests high efficiency and great pressure on resources regardless of the presence or not of a higher predator. These findings hint at the boldness of round gobies, which did not exhibit any pronounced threat sensitivity. This would seem to suggest great efficiency in food processing and a potential competitive advantage over local native species when colonising new ecosystems, irrespective of the presence of native predators. Our study did not detect any non-consumptive effect attributable to the higher predator, given that the feeding activity of the invasive round goby was not altered.
Zobrazit více v PubMed
Pyšek P., Hulme P.E., Simberloff D., Bacher S., Blackburn T.M., Carlton J.T., Dawson W., Essl F., Foxcroft L.C., Genovesi P., et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020;95:1511–1534. doi: 10.1111/brv.12627. PubMed DOI PMC
Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Essl F. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Seebens H., Bacher S., Blackburn T.M., Capinha C., Dawson W., Dullinger S., Pyšek P., Winter M., Arianoitsou M., Bacher S., et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2021;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI
Penk M.R., Jeschke J.M., Minchin D., Donohue I. Warming can enhance invasion success through asymmetries in energetic performance. J. Anim. Ecol. 2016;85:419–426. doi: 10.1111/1365-2656.12480. PubMed DOI
Bellard C., Jeschke J.M., Leroy B., Mace G.M. Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evol. 2018;8:5688–5700. doi: 10.1002/ece3.4098. PubMed DOI PMC
Diagne C., Leroy B., Vaissière A.C., Gozlan R.E., Roiz D., Jarić I., Salles J.M., Bradshaw C.J.A., Courchamp F. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. doi: 10.1038/s41586-021-03405-6. PubMed DOI
Haubrock P.J., Cuthbert R.N., Ricciardi A., Diagne C., Courchamp F. Economic costs of invasive bivalves in freshwater ecosystems. Divers. Distrib. 2022;28:1010–1021. doi: 10.1111/ddi.13501. DOI
Vilà M., Hulme P.E., editors. Impact of Biological Invasions on Ecosystem Services. Volume 12 Springer International Publishing; Cham, Switzerland: 2017.
Soto I., Cuthbert R.N., Ricciardi A., Ahmed D.A., Altermatt F., Schäfer R.B., Archambaud-Suard G., Bonada N., Cañedo-Argüelles M., Csabai Z., et al. The faunal Ponto-Caspianization of central and western European waterways. Biol. Invasions. 2023;25:2613–2629. doi: 10.1007/s10530-023-03060-0. DOI
Neilson M.E., Stepien C.A. Escape from the Ponto-Caspian: Evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei) Mol. Phylogenetics Evol. 2009;52:84–102. doi: 10.1016/j.ympev.2008.12.023. PubMed DOI
Copp G.H., Bianco P.G., Bogutskaya N.G., Erős T., Falka I., Ferreira M.T., Fox M.G., Freyhof J., Gozlan R.E., Grabowska J., et al. To be, or not to be, a non-native freshwater fish? J. Appl. Ichthyol. 2005;21:242–262. doi: 10.1111/j.1439-0426.2005.00690.x. DOI
Corkum L.D., Sapota M.R., Skora K.E. The round goby, Neogobius melanostomus, a fish invader on both sides of the Atlantic Ocean. Biol. Invasions. 2004;6:173–181. doi: 10.1023/B:BINV.0000022136.43502.db. DOI
Cerwenka A.F., Brandner J., Dashinov D., Geist J. Small but mighty: The round goby (Neogobius melanostomus) as a model species of biological invasions. Diversity. 2023;15:528. doi: 10.3390/d15040528. DOI
Sapota M.R. The round goby (Neogobius melanostomus) in the Gulf of Gdańsk—A species introduction into the Baltic Sea. In: Kautsky H., Snoeijs P., editors. Biology of the Baltic Sea: Proceedings of the 17th BMB Symposium, Stockholm, Sweden, 25–29 November 2001. Volume 176. Springer; Dordrecht, The Netherlands: 2004. pp. 219–224. Developments in Hydrobiology. DOI
Kornis M.S., Mercado-Silva N., Vander Zanden M.J. Twenty years of invasion: A review of round goby Neogobius melanostomus biology, spread and ecological implications. J. Fish Biol. 2012;80:235–285. doi: 10.1111/j.1095-8649.2011.03157.x. PubMed DOI
Masson L., Masson G., Beisel J.N., Gutowsky L.F.G., Fox M.G. Consistent life history shifts along invasion routes? An examination of round goby populations invading on two continents. Divers. Distrib. 2018;24:841–852. doi: 10.1111/ddi.12726. DOI
Christensen E.A., Norin T., Tabak I., van Deurs M., Behrens J.W. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J. Exp. Biol. 2021;224:jeb237669. doi: 10.1242/jeb.237669. PubMed DOI PMC
Diggins T.P., Kaur J., Chakraborti R.K., DePinto J.V. Diet choice by the exotic round goby (Neogobius melanostomus) as influenced by prey motility and environmental complexity. J. Great Lakes Res. 2002;28:411–420. doi: 10.1016/S0380-1330(02)70594-7. DOI
Copp G.H., Kováč V., Zweimüller I., Dias A., Nascimento M., Balážová M. Preliminary study of dietary interactions between invading Ponto-Caspian gobies and some native fish species in the River Danube near Bratislava (Slovakia) Aquat. Invasions. 2008;3:193–200. doi: 10.3391/ai.2008.3.2.10. DOI
Penk M., Saul W.C., Dick J.T.A., Donohue I., Alexander M.E., Linzmaier S., Jeschke J.M. A trophic interaction framework for identifying the invasive capacity of novel organisms. Methods Ecol. Evol. 2017;8:1786–1794. doi: 10.1111/2041-210X.12817. DOI
Saul W.C., Jeschke J.M., Heger T. The role of eco- evolutionary experience in invasion success. NeoBiota. 2013;17:57–74. doi: 10.3897/neobiota.17.5208. DOI
Morkūnė R., Tomczak M.T., Bacevičius E., Gasiūnaitė Z.R. Changes in the Baltic Sea coastal food web: A case study on the invasion of Round goby Neogobius melanostomus (Pallas, 1814) Estuar. Coast. Shelf Sci. 2024;296:108591. doi: 10.1016/j.ecss.2023.108591. DOI
Mikl L., Adámek Z., Všetičková L., Janáč M., Roche K., Šlapanský L., Jurajda P. Response of benthic macroinvertebrate assemblages to round (Neogobius melanostomus, Pallas 1814) and tubenose (Proterorhinus semilunaris, Heckel 1837) goby predation pressure. Hydrobiologia. 2017;785:219–232. doi: 10.1007/s10750-016-2927-z. DOI
Oesterwind D., Bock C., Förster A., Gabel M., Henseler C., Kotterba P., Mengeb M., Myts D., Winkler H.M. Predator and prey: The role of the round goby Neogobius melanostomus in the western Baltic. Mar. Biol. Res. 2017;13:188–197. doi: 10.1080/17451000.2016.1241412. DOI
Vašek M., Všetičková L., Roche K., Jurajda P. Diet of two invading gobiid species (Proterorhinus semilunaris and Neogobius melanostomus) during the breeding and hatching season: No field evidence of extensive predation on fish eggs and fry. Limnologica. 2014;46:31–36. doi: 10.1016/j.limno.2013.11.003. DOI
Lutz E., Hirsch P.E., Bussmann K., Wiegleb J., Jermann H.P., Muller R., Burkhardt-Holm P., Adrian-Kalchhauser I. Predation on native fish eggs by invasive round goby revealed by species-specific gut content DNA analyses. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020;30:1566–1577. doi: 10.1002/aqc.3409. DOI
Dashinov D., Uzunova E. Diet and feeding strategies of round goby, Neogobius melanostomus (Pallas, 1814) from the invasion front in the Danube River tributaries (Bulgaria): Ontogenetic shift and seasonal variation. Limnologica. 2020;83:125796. doi: 10.1016/j.limno.2020.125796. DOI
Borcherding J., Dolina M., Heermann L., Knutzen P., Krüger S., Matern S., van Treeck R., Gertzen S. Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany. Limnologica. 2013;43:49–58. doi: 10.1016/j.limno.2012.08.003. DOI
Bhagat Y., Ruetz III C.R., Akins A.L. Differential habitat use by the round goby (Neogobius melanostomus) and Dreissena spp. in coastal habitats of eastern Lake Michigan. J. Great Lakes Res. 2015;41:1087–1093. doi: 10.1016/j.jglr.2015.08.005. DOI
Števove B., Kováč V. Ontogenetic variations in the diet of two invasive gobies, Neogobius melanostomus (Pallas, 1814) and Ponticola kessleri (Günther, 1861), from the middle Danube (Slovakia) with notice on their potential impact on benthic invertebrate communities. Sci. Total Environ. 2016;557:510–519. doi: 10.1016/j.scitotenv.2016.03.048. PubMed DOI
Barton D.R., Johnson R.A., Campbell L., Petruniak J., Patterson M. Effects of round gobies (Neogobius melanostomus) on dreissenid mussels and other invertebrates in eastern Lake Erie, 2002–2004. J. Great Lakes Res. 2005;31:252–261. doi: 10.1016/S0380-1330(05)70318-X. DOI
Lederer A.M., Janssen J., Reed T., Wolf A. Impacts of the introduced round goby (Apollonia melanostoma) on dreissenids (Dreissena polymorpha and Dreissena bugensis) and on macroinvertebrate community between 2003 and 2006 in the littoral zone of Green Bay, Lake Michigan. J. Great Lakes Res. 2008;34:690–697. doi: 10.1016/S0380-1330(08)71611-3. DOI
Henseler C., Oesterwind D., Kotterba P., Nordström M.C., Snickars M., Törnroos A., Bonsdorff E. Impact of round goby on native invertebrate communities-An experimental field study. J. Exp. Mar. Biol. Ecol. 2021;541:151571. doi: 10.1016/j.jembe.2021.151571. DOI
Ustups D., Bergström U., Florin A.B., Kruze E., Zilniece D., Elferts D., Knospina E., Uzars D. Diet overlap between juvenile flatfish and the invasive round goby in the central Baltic Sea. J. Sea Res. 2016;107:121–129. doi: 10.1016/j.seares.2015.06.021. DOI
Jůza T., Blabolil P., Baran R., Bartoň D., Čech M., Draštík V., Frouzová J., Holubová M., Ketelaars H.A.M., Kočvara L., et al. Collapse of the native ruffe (Gymnocephalus cernua) population in the Biesbosch lakes (The Netherlands) owing to round goby (Neogobius melanostomus) invasion. Biol. Invasions. 2018;20:1523–1535. doi: 10.1007/s10530-017-1644-5. DOI
Ramler D., Keckeis H. Occurrence of non-native fishes in the Danube east of Vienna (Austria) and potential interactions of invasive gobiids with native fishes. J. Appl. Ichthyol. 2019;35:850–862. doi: 10.1111/jai.13916. DOI
Le Hen G., Balzani P., Haase P., Kouba A., Liu C., Nagelkerke L.A., Theissen N., Renault D., Soto I., Haubrock P.J. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. Sci. Total Environ. 2023;867:161486. doi: 10.1016/j.scitotenv.2023.161486. PubMed DOI
Jacobs P., Hoedemakers K. The round goby Neogobius melanostomus (Pallas, 1814) (Perciformes: Gobiidae), an invasive species in the Albert Canal (Belgium) Belg. J. Zool. 2013;143:148–153. doi: 10.26496/bjz.2013.127. DOI
Taraborelli A.C., Fox M.G., Johnson T.B., Schaner T. Round goby (Neogobius melanostomus) population structure, biomass, prey consumption and mortality from predation in the Bay of Quinte, Lake Ontario. J. Great Lakes Res. 2010;36:625–632. doi: 10.1016/j.jglr.2010.07.011. DOI
Mikl L., Adámek Z., Roche K., Všetičková L., Šlapanský L., Jurajda P. Invasive Ponto-Caspian gobies in the diet of piscivorous fish in a European lowland river. Fundam. Appl. Limnol. 2017;190:157–171. doi: 10.1127/fal/2017/1024. DOI
Bruestle E.L., Karboski C., Hussey A., Fisk A.T., Mehler K., Pennuto C., Gorsky D. Novel trophic interaction between lake sturgeon (Acipenser fulvescens) and non-native species in an altered food web. Can. J. Fish. Aquat. Sci. 2019;76:6–14. doi: 10.1139/cjfas-2017-0282. DOI
Batabyal A. Predator–prey systems as models for integrative research in biology: The value of a non-consumptive effects framework. J. Exp. Biol. 2023;226:jeb245851. doi: 10.1242/jeb.245851. PubMed DOI
Lima S.L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience. 1998;48:25–34. doi: 10.2307/1313225. DOI
Mitchell M.D., Harborne A.R. Non-consumptive effects in fish predator–prey interactions on coral reefs. Coral Reefs. 2020;39:867–884. doi: 10.1007/s00338-020-01920-y. DOI
Kindinger T.L., Albins M.A. Consumptive and non-consumptive effects of an invasive marine predator on native coral-reef herbivores. Biol. Invasions. 2017;19:131–146. doi: 10.1007/s10530-016-1268-1. DOI
Creel S., Christianson D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 2008;23:194–201. doi: 10.1016/j.tree.2007.12.004. PubMed DOI
Preisser E.L., Bolnick D.I. The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE. 2008;3:e2465. doi: 10.1371/journal.pone.0002465. PubMed DOI PMC
Madin E.M., Gaines S.D., Warner R.R. Field evidence for pervasive indirect effects of fishing on prey foraging behavior. Ecology. 2010;91:3563–3571. doi: 10.1890/09-2174.1. PubMed DOI
Berejikian B.A., Tezak E.P., LaRae A.L. Innate and enhanced predator recognition in hatchery-reared chinook salmon. Environ. Biol. Fishes. 2003;67:241–251. doi: 10.1023/A:1025887015436. DOI
Sih A., Bolnick D.I., Luttbeg B., Orrock J.L., Peacor S.D., Pintor L.M., Preisser E., Rehage J.S., Vonesh J.R. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos. 2010;119:610–621. doi: 10.1111/j.1600-0706.2009.18039.x. DOI
Dall S.R. Managing risk: The perils of uncertainty. In: Westneat D.F., Fox C.W., editors. Evolutionary Behavioral Ecology. Oxford University Press; Oxford, UK: 2010. pp. 194–206.
Smith R.J.F. Chemical Signals in Vertebrates 4. Springer; Boston, MA, USA: 1986. The evolution of chemical alarm signals in fishes; pp. 99–115.
Chivers D.P., Smith R.J.F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience. 1998;5:338–352. doi: 10.1080/11956860.1998.11682471. DOI
Kats L.B., Dill L.M. The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience. 1998;5:361–394. doi: 10.1080/11956860.1998.11682468. DOI
Ferrari M.C.O., Wisenden B.D., Chivers D.P. Chemical ecology of predator-prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 2010;88:698–724. doi: 10.1139/Z10-029. DOI
Alemadi S., Wisenden B. Antipredator response to injury-released chemical alarm cues by convict cichlid young before and after independence from parental protection. Behaviour. 2002;139:603–611. doi: 10.1163/15685390260136726. DOI
Hettyey A., Tóth Z., Thonhauser K.E., Frommen J.G., Penn D.J., Van Buskirk J. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia. 2015;179:699–710. doi: 10.1007/s00442-015-3382-7. PubMed DOI
Burks R.L., Lodge D.M. Cued in: Advances and opportunities in freshwater chemical ecology. J. Chem. Ecol. 2002;28:1901–1917. doi: 10.1023/A:1020785525081. PubMed DOI
Miyai C.A., Sanches F.H.C., Pinho-Neto C.F., Barreto R.E. Effects of predator odour on antipredator responses of Nile tilapia. Physiol. Behav. 2016;165:22–27. doi: 10.1016/j.physbeh.2016.06.033. PubMed DOI
Brown G.E. Learning about danger: Chemical alarm cues and local risk assessment in prey fishes. Fish Fish. 2003;4:227–234. doi: 10.1046/j.1467-2979.2003.00132.x. DOI
Wisenden B.D. Chemically mediated strategies to counter predation. In: Collin S.P., Marshall N.J., editors. Sensory Processing in Aquatic Environments. Springer; New York, NY, USA: 2003. pp. 236–251. DOI
Barcellos L.J.G., Volpato G.L., Barreto R.E., Coldebella I., Ferreira D. Chemical communication of handling stress in fish. Physiol. Behav. 2011;103:372–375. doi: 10.1016/j.physbeh.2011.03.009. PubMed DOI
Lehtiniemi M. Swim or hide: Predator cues cause species specific reactions in young fish larvae. J. Fish Biol. 2005;66:1285–1299. doi: 10.1111/j.0022-1112.2005.00681.x. DOI
Milano D., Lozada M., Zagarese H.E. Predator-induced reaction patterns of landlocked Galaxias maculatus to visual and chemical cues. Aquat. Ecol. 2010;44:741–748. doi: 10.1007/s10452-010-9312-1. DOI
Sanches F.H.C., Miyai C.A., Pinho-Neto C.F., Barreto R.E. Stress responses to chemical alarm cues in Nile tilapia. Physiol. Behav. 2015;149:8–13. doi: 10.1016/j.physbeh.2015.05.010. PubMed DOI
Pereira R.T., Leutz J.D.A.C.M., Valença-Silva G., Barcellos L.J.G., Barreto R.E. Ventilation responses to predator odors and conspecific chemical alarm cues in the frillfin goby. Physiol. Behav. 2017;179:319–323. doi: 10.1016/j.physbeh.2017.06.023. PubMed DOI
Brown G.E., Rive A.C., Ferrari M.C., Chivers D.P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 2006;61:9–16. doi: 10.1007/s00265-006-0232-y. DOI
Jónsson L. Chemical stimuli: Role in the behavior of fishes. In: Ali M.A., editor. Environmental Physiology of Fishes. Volume 35. Springer; Boston, MA, USA: 1980. pp. 353–367. (NATO Advanced Study Institutes Series). DOI
Arvigo A.L., Miyai C.A., Sanches F.H., Barreto R.E., Costa T.M. Combined effects of predator odor and alarm substance on behavioral and physiological responses of the pearl cichlid. Physiol. Behav. 2019;206:259–263. doi: 10.1016/j.physbeh.2019.02.032. PubMed DOI
Mirza R.S., Chivers D.P. Are chemical alarm cues conserved within salmonid fishes? J. Chem. Ecol. 2001;27:1641–1655. doi: 10.1023/A:1010414426082. PubMed DOI
Hirsch P.E., N’Guyen A., Adrian-Kalchhauser I., Burkhardt-Holm P. What do we really know about the impacts of one of the 100 worst invaders in Europe? A reality check. Ambio. 2016;45:267–279. doi: 10.1007/s13280-015-0718-9. PubMed DOI PMC
Bromley P.J. The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish. Rev. Fish Biol. Fish. 1994;4:36–66. doi: 10.1007/BF00043260. DOI
Bajkov A.D. How to estimate the daily food consumption of fish under natural conditions. Trans. Am. Fish. Soc. 1935;65:288–289. doi: 10.1577/1548-8659(1935)65[288:HTETDF]2.0.CO;2. DOI
Elliott J.M., Persson L. The estimation of daily rates of food consumption for fish. J. Anim. Ecol. 1978;47:977–991. doi: 10.2307/3682. DOI
Jobling M. Mathematical models of gastric emptying and the estimation of daily rates of food consumption for fish. J. Fish Biol. 1981;19:245–257. doi: 10.1111/j.1095-8649.1981.tb05829.x. DOI
Hedden S.C., Gido K.B., Hedden C.K., Pennock C.A., Duran B.R., Hines B.A., Gilbert E.I., McKinstry M.C., Durst S.L., Franssen N.R. Quantifying consumption of native fishes by nonnative Channel Catfish in a desert river. N. Am. J. Fish. Manag. 2021;41:82–94. doi: 10.1002/nafm.10514. DOI
Houston A.I., McNamara J.M., Hutchinson J.M. General results concerning the trade-off between gaining energy and avoiding predation. Philos. Trans. R. Soc. Ser. B Biol. Sci. 1993;341:375–397. doi: 10.1098/rstb.1993.0123. DOI
Åbjörnsson K., Hansson L.A., Brönmark C. Responses of prey from habitats with different predator regimes: Local adaptation and heritability. Ecology. 2004;85:1859–1866. doi: 10.1890/03-0074. DOI
Pettersson L.B., Brönmark C. Trading off safety against food: State dependent habitat choice and foraging in crucian carp. Oecologia. 1993;95:353–357. doi: 10.1007/BF00320988. PubMed DOI
Kristensen E.A., Closs G.P. Anti-predator response of naïve and experienced common bully to chemical alarm cues. J. Fish Biol. 2004;64:643–652. doi: 10.1111/j.1095-8649.2004.00328.x. DOI
McCormick M.I., Larson J.K. Field verification of the use of chemical alarm cues in a coral reef fish. Coral Reefs. 2007;26:571–576. doi: 10.1007/s00338-007-0221-2. DOI
McCormick M.I., Manassa R. Predation risk assessment by olfactory and visual cues in a coral reef fish. Coral Reefs. 2008;27:105–113. doi: 10.1007/s00338-007-0296-9. DOI
del Mar Palacios M., Warren D.T., McCormick M.I. Sensory cues of a top-predator indirectly control a reef fish mesopredator. Oikos. 2016;125:201–209. doi: 10.1111/oik.02116. DOI
Palacios M.D.M., McCormick M.I. Positive indirect effects of top-predators on the behaviour and survival of juvenile fishes. Oikos. 2021;130:219–230. doi: 10.1111/oik.07731. DOI
Foam P.E., Harvey M.C., Mirza R.S., Brown G.E. Heads up: Juvenile convict cichlids switch to threat-sensitive foraging tactics based on chemosensory information. Anim. Behav. 2005;70:601–607. doi: 10.1016/j.anbehav.2004.12.011. DOI
Holmes T.H., McCormick M.I. Smell, learn and live: The role of chemical alarm cues in predator learning during early life history in a marine fish. Behav. Process. 2010;83:299–305. doi: 10.1016/j.beproc.2010.01.013. PubMed DOI
Buřič M., Bláha M., Kouba A., Drozd B. Upstream expansion of round goby (Neogobius melanostomus)–first record in the upper reaches of the Elbe river. Knowl. Manag. Aquat. Ecosyst. 2015;416:32. doi: 10.1051/kmae/2015029. DOI
Ray W.J., Corkum L.D. Habitat and site affinity of the round goby. J. Great Lakes Res. 2001;27:329–334. doi: 10.1016/S0380-1330(01)70648-X. DOI
Sadler K. Effects of temperature on the growth and survival of the European eel, Anguilla anguilla L. J. Fish Biol. 1979;15:499–507. doi: 10.1111/j.1095-8649.1979.tb03633.x. DOI
Seymour E.A. Devising optimum feeding regimes and temperatures for the warmwater culture of eel, Anguilla anguilla L. Aquac. Res. 1989;20:311–324. doi: 10.1111/j.1365-2109.1989.tb00356.x. DOI
Lee V.A., Johnson T.B. Development of a bioenergetics model for the round goby (Neogobius melanostomus) J. Great Lakes Res. 2005;31:125–134. doi: 10.1016/S0380-1330(05)70244-6. DOI
Golani D., Shefler D., Gelman A. Aspects of growth and feeding habits of the adult European eel (Anguilla anguilla) in Lake Kinneret (Lake Tiberias), Israel. Aquaculture. 1988;74:349–354. doi: 10.1016/0044-8486(88)90378-X. DOI
Emde S., Kochmann J., Kuhn T., Plath M., Klimpel S. Getting what is served? Feeding ecology influencing parasite-host interactions in invasive round goby Neogobius melanostomus. PLoS ONE. 2014;9:e109971. doi: 10.1371/journal.pone.0109971. PubMed DOI PMC
Carman S.M., Janssen J., Jude D.J., Berg M.B. Diel interactions between prey behaviour and feeding in an invasive fish, the round goby, in a North American river. Freshw. Biol. 2006;51:742–755. doi: 10.1111/j.1365-2427.2006.01527.x. DOI
Didenko A., Volikov Y., Baranov V., Kruzhylina S., Gurbyk A., Bielikova O. Chironomid diversity in the diets of Ponto-Caspian gobiids in a freshwater habitat: Implications for resource partitioning. Limnologica. 2021;89:125890. doi: 10.1016/j.limno.2021.125890. DOI
Błońska D., Grabowska J., Kobak J., Rachalewski M., Bącela-Spychalska K. Fish predation on sympatric and allopatric prey—A case study of Ponto-Caspian gobies, European bullhead and amphipods. Limnologica. 2016;61:1–6. doi: 10.1016/j.limno.2016.06.003. DOI
Verheggen F.J., Haubruge E., Mescher M.C. Alarm pheromones—Chemical signaling in response to danger. Vitam. Horm. 2010;83:215–239. doi: 10.1016/S0083-6729(10)83009-2. PubMed DOI
Richter L., Schwenkmezger L., Becker J., Winkelmann C., Hellmann C., Worischka S. The very hungry amphipod: The invasive Dikerogammarus villosus shows high consumption rates for two food sources and independent of predator cues. Biol. Invasions. 2018;20:1321–1335. doi: 10.1007/s10530-017-1629-4. DOI
Szydłowska N., Let M., Franta P., Buřič M., Worischka S., Richter L., Drozd B. Gut evacuation rate as a tool for revealing feeding patterns in the invasive round goby (Neogobius melanostomus) under different feeding modes, food types and temperatures. Aquat. Invasions. 2024 submitted .
Hazlett B. Responses to multiple chemical cues by the crayfish Orconectes virilis. Behaviour. 1999;136:161–177. doi: 10.1163/156853999501261. DOI
Manko P. Stomach content analysis in freshwater fish feeding ecology. University of Prešov. 2016;116:1–25.
Andersen N.G. Depletion rates of gastrointestinal content in common goby (Pomatoschistus microps (Kr.)). Effects of temperature and fish size. Dana. 1984;3:31–42.
Andersen N.G. The effects of predator size, temperature, and prey characteristics on gastric evacuation in whiting. J. Fish Biol. 1999;54:287–301. doi: 10.1111/j.1095-8649.1999.tb00830.x. DOI
Sveier H., Wathne E., Lied E. Growth, feed and nutrient utilisation and gastrointestinal evacuation time in Atlantic salmon (Salmo salar L.): The effect of dietary fish meal particle size and protein concentration. Aquaculture. 1999;180:265–282. doi: 10.1016/S0044-8486(99)00196-9. DOI
Andersen N.G. A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations. J. Fish Biol. 2001;59:1198–1217. doi: 10.1111/j.1095-8649.2001.tb00186.x. DOI
Gillum Z.D., Facendola J.J., Scharf F.S. Consumption and gastric evacuation in juvenile red drum Sciaenops ocellatus (Linnaeus): Estimation of prey type effects and validation of field-based daily ration estimates. J. Exp. Mar. Biol. Ecol. 2012;413:21–29. doi: 10.1016/j.jembe.2011.11.020. DOI
Seyhan K., Bascinar N.S., Bascinar N., Khan U. Gastric evacuation in brook trout (Salvelinus fontinalis) fry: Effect of body size. Pak. J. Zool. 2020;52:1173. doi: 10.17582/journal.pjz/20160830030220. DOI
Persson L. Rate of food evacuation in roach (Rutilus rutilus) in relation to temperature, and the application of evacuation rate estimates for studies on the rate of food consumption. Freshw. Biol. 1982;12:203–210. doi: 10.1111/j.1365-2427.1982.tb00615.x. DOI
Temming A., Andersen N.G. Modelling gastric evacuation in cod. ICES CM. 1992;61:2–13.
Sweka J.A., Keith Cox M., Hartman K.J. Gastric evacuation rates of brook trout. Trans. Am. Fish. Soc. 2004;133:204–210. doi: 10.1577/T02-064. DOI
Chabot D., Behrens J., Andersen N.G. Digesting in hypoxia: Impact on gastric evacuation rate and postprandial metabolism (SDA) of Atlantic cod, Gadus morhua; Proceedings of the ICES Annual Science Conference 2015; Copenhagen, Denmark. 21–25 September 2015.
Barreto R.E., Barbosa-Júnior A., Urbinati E.C., Hoffmann A. Cortisol influences the antipredator behavior induced by chemical alarm cues in the Frillfin goby. Horm. Behav. 2014;65:394–400. doi: 10.1016/j.yhbeh.2014.03.007. PubMed DOI
Archard G.A., Earley R.L., Hanninen A.F., Braithwaite V.A. Correlated behaviour and stress physiology in fish exposed to different levels of predation pressure. Funct. Ecol. 2012;26:637–645. doi: 10.1111/j.1365-2435.2012.01968.x. DOI
Rehnberg B.G., Schreck C.B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): Behavioural reaction and the physiological stress response. Can. J. Zool. 1987;65:481–485. doi: 10.1139/z87-074. DOI
Barreto R.E., Miyai C.A., Sanches F.H.C., Giaquinto P.C., Delicio H.C., Volpato G.L. Blood cues induce antipredator behavior in Nile tilapia conspecifics. PLoS ONE. 2013;8:e54642. doi: 10.1371/journal.pone.0054642. PubMed DOI PMC
Giaquinto P.C., Volpato G.L. Chemical cues related to conspecific size in pintado catfish, Pseudoplatystoma coruscans. Acta Ethologica. 2005;8:65–69. doi: 10.1007/s10211-005-0001-3. DOI
Giaquinto P.C., Hoffmann A. The scent of stress: Pintado catfish differentially respond to chemical cues from stressed conspecifics. Behaviour. 2012;149:941–951. doi: 10.1163/1568539X-00003022. DOI
Fraser D.F., Huntingford F.A. Feeding and avoiding predation hazard: The behavioral response of the prey. Ethology. 1986;73:56–68. doi: 10.1111/j.1439-0310.1986.tb00999.x. DOI
Chapple D.G., Simmonds S.M., Wong B.B. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol. Evol. 2012;27:57–64. doi: 10.1016/j.tree.2011.09.010. PubMed DOI
Ericsson P., Persson A., Behrens J.W., Brodin T., Hirsch P.E., Sundelin A., van Deurs M., von Friesen L.W., Nilsson P.A. Personality-dependent inter-and intraspecific foraging competition in the invasive round goby, Neogobius melanostomus. J. Fish Biol. 2021;98:1234–1241. doi: 10.1111/jfb.14652. PubMed DOI
Galli A., Behrens J.W., Gesto M., Moran N.P. Boldness and physiological variation in round goby populations along their Baltic Sea invasion front. Physiol. Behav. 2023;269:114261. doi: 10.1016/j.physbeh.2023.114261. PubMed DOI
Yeung E.J., Klemet-N’Guessan S., Hossie T.J., Fox M.G. Boldness, movement and exploration tendency in round goby (Neogobius melanostomus) in Southern Ontario. J. Fish Biol. 2022;103:790–797. doi: 10.1111/jfb.15297. PubMed DOI
Sih A., Bell A., Johnson J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004;19:372–378. doi: 10.1016/j.tree.2004.04.009. PubMed DOI
Mittelbach G.G., Ballew N.G., Kjelvik M.K. Fish behavioral types and their ecological consequences. Can. J. Fish. Aquat. Sci. 2014;71:927–944. doi: 10.1139/cjfas-2013-0558. DOI
Ioannou C., Payne M., Krause J. Ecological consequences of the bold-shy continuum: The effect of predator boldness on prey risk. Oecologia. 2008;157:177–182. doi: 10.1007/s00442-008-1058-2. PubMed DOI
Thorlacius M., Brodin T. Investigating large-scale invasion patterns using-small scale invasion successions—Phenotypic differentiation of the invasive round goby (Neogobius melanostomus) at invasion fronts. Limnol. Oceanogr. 2018;63:702–713. doi: 10.1002/lno.10661. DOI
Behrens J.W., von Friesen L.W., Brodin T., Ericsson P., Hirsch P.E., Persson A., Sundelin A., van Deurs M., Nilsson P.A. Personality-and size-related metabolic performance in invasive round goby (Neogobius melanostomus) Physiol. Behav. 2020;215:112777. doi: 10.1016/j.physbeh.2019.112777. PubMed DOI
Manassa R.P., McCormick M.I. Social learning and acquired recognition of a predator by a marine fish. Anim. Cogn. 2012;15:559–565. doi: 10.1007/s10071-012-0484-z. PubMed DOI
Pūtys Ž., Ložys L., Būda V. Respiratory response to the chemical cues of injured conspecifi cs and histology of skin in round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae) Acta Ichthyol. Piscat. 2015;45:411–415. doi: 10.3750/AIP2015.45.4.10. DOI
Chivers D.P., Dixson D.L., White J.R., McCormick M.I., Ferrari M.C. Degradation of chemical alarm cues and assessment of risk throughout the day. Ecol. Evol. 2013;3:3925–3934. doi: 10.1002/ece3.760. PubMed DOI PMC
Zhao X., Ferrar M.C., Chivers D.P. Threat-sensitive learning of predator odours by a prey fish. Behaviour. 2006;143:1103–1121. doi: 10.1163/156853906778607408. DOI
Zhao X., Chivers D.P. Response of juvenile goldfish (Carassius auratus) to chemical alarm cues: Relationship between response intensity, response duration, and the level of predation risk. In: Mason R.T., LeMaster M.P., Müller-Schwarze D., editors. Chemical Signals in Vertebrates 10. Springer; Boston, MA, USA: 2005. pp. 334–341. DOI
Kłosiński P., Kobak J., Augustyniak M., Pawlak R., Jermacz Ł., Poznańska-Kakareko M., Kakareko T. Behavioural responses to con-and heterospecific alarm cues by an alien and a coexisting native fish. Hydrobiologia. 2022;849:985–1000. doi: 10.1007/s10750-021-04761-0. DOI
Wisenden B., Rugg M., Korpi N., Fuselier L. Lab and field estimates of active time of chemical alarm cues of a cyprinid fish and an amphipod crustacean. Behaviour. 2009;146:1423–1442.
Wagner C.M., Bals J.D., Byford G.J., Scott A.M., Feder M.E. Olfactory sensitivity and threat-sensitive responses to alarm cue in an invasive fish. Biol. Invasions. 2023;25:3083–3101. doi: 10.1007/s10530-023-03092-6. DOI
Atema J. In: Chemical Senses, Chemical Signals, and Feeding Behavior in Fishes. Bardach J.E., Magnuson J.J., May R.C., Reinhart J.M., editors. FAO; Makati, Philippines: 1980. pp. 57–101.
Kasumyan A.O. The olfactory system in fish: Structure, function, and role in behavior. J. Ichthyol. 2004;44:180.
Belanger R.M., Smith C.M., Corkum L.D., Zielinski B.S. Morphology and histochemistry of the peripheral olfactory organ in the round goby, Neogobius melanostomus (Teleostei: Gobiidae) J. Morphol. 2003;257:62–71. doi: 10.1002/jmor.10106. PubMed DOI
Pfeiffer W. The distribution of fright reaction and alarm substance cells in fishes. Copeia. 1977:653–665. doi: 10.2307/1443164. DOI
Smith R.J.F. Alarm signals in fishes. Rev. Fish Biol. Fish. 1992;2:33–63. doi: 10.1007/BF00042916. DOI
Marsh-Hunkin K.E., Gochfeld D.J., Slattery M. Antipredator responses to invasive lionfish, Pterois volitans: Interspecific differences in cue utilization by two coral reef gobies. Mar. Biol. 2013;160:1029–1040. doi: 10.1007/s00227-012-2156-6. DOI
McLean F., Barbee N.C., Swearer S.E. Avoidance of native versus non-native predator odours by migrating whitebait and juveniles of the common galaxiid, Galaxias maculatus. N. Z. J. Mar. Freshw. Res. 2007;41:175–184. doi: 10.1080/00288330709509906. DOI
Utne-Palm A.C. Response of naïve two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Mar. Ecol. Prog. Ser. 2001;218:267–274. doi: 10.3354/meps218267. DOI
Ferrari M.C., Messier F., Chivers D.P. Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology. 2007;17:263–266. doi: 10.1007/s00049-007-0381-0. DOI
Mathis A., Smith R.J.F. Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius) Behav. Ecol. 1993;4:260–265. doi: 10.1093/beheco/4.3.260. DOI
Wisenden B.D., Chivers D.P. The role of public chemical information in antipredator behaviour. Commun. Fishes. 2006;1:259–278.
Pollock M.S., Chivers D.P., Mirza R.S., Wisenden B.D. Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. Environ. Biol. Fishes. 2003;66:313–319. doi: 10.1023/A:1023905824660. DOI
Dalesman S., Rundle S.D., Bilton D.T., Cotton P.A. Phylogenetic relatedness and ecological interactions determine antipredator behavior. Ecology. 2007;88:2462–2467. doi: 10.1890/07-0403.1. PubMed DOI
Vilhunen S., Hirvonen H. Innate antipredator responses of Arctic charr (Salvelinus alpinus) depend on predator species and their diet. Behav. Ecol. Sociobiol. 2003;55:1–10. doi: 10.1007/s00265-003-0670-8. DOI
Mathis A., Smith R.J.F. Chemical labeling of northern pike (Esox lucius) by the alarm pheromone of fathead minnows (Pimephales promelas) J. Chem. Ecol. 1993;19:1967–1979. doi: 10.1007/BF00983800. PubMed DOI
Brown G.E., Godin J.G.J. Who dares, learns: Chemical inspection behaviour and acquired predator recognition in a characin fish. Anim. Behav. 1999;57:475–481. doi: 10.1006/anbe.1998.1017. PubMed DOI
Brown G.E., Godin J.G.J. Anti-predator responses to conspecific and heterospecific skin extracts by threespine sticklebacks: Alarm pheromones revisited. Behaviour. 1997;134:1123–1134. doi: 10.1163/156853997X00098. DOI
Pfeiffer W. Alarm substances. Experientia. 1963;19:113–123. doi: 10.1007/BF02171582. PubMed DOI
Wisenden B. Active space of chemical alarm cue in natural fish populations. Behaviour. 2008;145:391–407. doi: 10.1163/156853908783402920. DOI
Olson J.A., Olson J.M., Walsh R.E., Wisenden B.D. A method to train groups of predator-naive fish to recognize and respond to predators when released into the natural environment. N. Am. J. Fish. Manag. 2012;32:77–81. doi: 10.1080/02755947.2012.661390. DOI
Rakauskas V., Pūtys Ž., Dainys J., Lesutienė J., Ložys L., Arbačiauskas K. Increasing population of the invader round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and its trophic role in the Curonian Lagoon, SE Baltic Sea. Acta Ichthyol. Piscat. 2013;43:95–108. doi: 10.3750/AIP2013.43.2.02. DOI
Jůza T., Blabolil P., Bartoň D., Čech M., Draštík V., Frouzova J., Holubová M., Ketelaars H.A.M., Kočvara L., Kubečka J., et al. Recovery of the ruffe (Gymnocephalus cernua) population after an invasion boom of round goby (Neogobius melanostomus) in De Gijster Lake (The Netherlands) Aquat. Invasions. 2021;16:499–511. doi: 10.3391/ai.2021.16.3.07. DOI
Ylönen H., Kortet R., Myntti J., Vainikka A. Predator odor recognition and antipredatory response in fish: Does the prey know the predator diel rhythm? Acta Oecologica. 2007;31:1–7. doi: 10.1016/j.actao.2005.05.007. DOI
Utne A.C.W., Bacchi B. The influence of visual and chemical stimuli from cod Gadus morhua on the distribution of two-spotted goby Gobiusculus flavescens (Fabricius) Sarsia. 1997;82:129–135. doi: 10.1080/00364827.1997.10413646. DOI
Sreedharan G., Corkum L.D., Johnson T.B. Response of the round goby, an invasive fish, to food odours. Int. Ver. Theor. Angew. Limnol. Verhandlungen. 2009;30:1275–1278. doi: 10.1080/03680770.2009.11923929. DOI
Holmes T.H., McCormick M.I. Response across a gradient: Behavioural reactions of newly settled fish to predation cues. Anim. Behav. 2011;81:543–550. doi: 10.1016/j.anbehav.2010.11.019. DOI
Yavno S., Corkum L.D. Round goby Neogobius melanostomus attraction to conspecific and heterospecific egg odours. J. Fish Biol. 2011;78:1944–1953. doi: 10.1111/j.1095-8649.2011.02964.x. PubMed DOI
Hirvonen H., Holopainen S., Lempiäinen N., Selin M., Tulonen J. Sniffing the trade-off: Effects of eel odours on nocturnal foraging activity of native and introduced crayfish juveniles. Mar. Freshw. Behav. Physiol. 2007;40:213–218. doi: 10.1080/10236240701556919. DOI