Potential sources of time lags in calibrating species distribution models
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38515765
PubMed Central
PMC10952696
DOI
10.1111/jbi.14726
PII: JBI14726
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, climatic debt, colonization credit, extinction debt, invasion debt, mismatch, niche, projection, species distribution models,
- Publikační typ
- časopisecké články MeSH
The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.
Associate Laboratory TERRA Lisbon Portugal
Department of Environmental Sciences University of Basel Basel Switzerland
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Helmholtz Centre for Environmental Research UFZ Halle Germany
Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Martin Luther University Halle Wittenberg Halle Germany
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA Grenoble F 38000 France
Zobrazit více v PubMed
Aguilar, R. , Cristóbal‐Pérez, E. J. , Balvino‐Olvera, F. J. , de Jesús Aguilar‐Aguilar, M. , Aguirre‐Acosta, N. , Ashworth, L. , Lobo, J. A. , Martén‐Rodríguez, S. , Fuchs, E. J. , Sanchez‐Montoya, G. , Bernardello, G. , & Quesada, M. (2019). Habitat fragmentation reduces plant progeny quality: A global synthesis. Ecology Letters, 22(7), 1163–1173. 10.1111/ele.13272 PubMed DOI
Alexander, J. M. , Chalmandrier, L. , Lenoir, J. , Burgess, T. I. , Essl, F. , Haider, S. , Kueffer, C. , McDougall, K. , Milbau, A. , Nuñez, M. A. , Pauchard, A. , Rabitsch, W. , Rew, L. J. , Sanders, N. J. , & Pellissier, L. (2018). Lags in the response of mountain plant communities to climate change. Global Change Biology, 24(2), 563–579. 10.1111/gcb.13976 PubMed DOI PMC
Alexander, J. M. , Diez, J. M. , Hart, S. P. , & Levine, J. M. (2016). When climate reshuffles competitors: A call for experimental macroecology. Trends in Ecology and Evolution, 31(11), 831–841. 10.1016/j.tree.2016.08.003 PubMed DOI PMC
Antão, L. H. , Bates, A. E. , Blowes, S. A. , Waldock, C. , Supp, S. R. , Magurran, A. E. , Dornelas, M. , & Schipper, A. M. (2020). Temperature‐related biodiversity change across temperate marine and terrestrial systems. Nature Ecology and Evolution, 4(7), 927–933. 10.1038/s41559-020-1185-7 PubMed DOI
Atwater, D. Z. , & Barney, J. N. (2021). Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Global Ecology and Biogeography, 30(8), 1671–1684. 10.1111/geb.13342 DOI
Bailey, S. A. , Brown, L. , Campbell, M. L. , Canning‐Clode, J. , Carlton, J. T. , Castro, N. , Chainho, P. , Chan, F. T. , Creed, J. C. , Curd, A. , Darling, J. , Fofonoff, P. , Galil, B. S. , Hewitt, C. L. , Inglis, G. J. , Keith, I. , Mandrak, N. E. , Marchini, A. , McKenzie, C. H. , … Zhan, A. (2020). Trends in the detection of aquatic non‐indigenous species across global marine, estuarine and freshwater ecosystems: A 50‐year perspective. Diversity and Distributions, 26(12), 1780–1797. 10.1111/ddi.13167 PubMed DOI PMC
Baselga, A. , Lobo, J. M. , Svenning, J. C. , & Araújo, M. B. (2012). Global patterns in the shape of species geographical ranges reveal range determinants. Journal of Biogeography, 39(4), 760–771. 10.1111/j.1365-2699.2011.02612.x DOI
Beale, C. M. , Lennon, J. J. , Yearsley, J. M. , Brewer, M. J. , & Elston, D. A. (2010). Regression analysis of spatial data. Ecology Letters, 13(2), 246–264. 10.1111/j.1461-0248.2009.01422.x PubMed DOI
Bertrand, R. , Lenoir, J. , Piedallu, C. , Dillon, G. R. , De Ruffray, P. , Vidal, C. , Pierrat, J. C. , & Gégout, J. C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374), 517–520. 10.1038/nature10548 PubMed DOI
Broennimann, O. , Mráz, P. , Petitpierre, B. , Guisan, A. , & Müller‐Schärer, H. (2014). Contrasting spatio‐temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. Journal of Biogeography, 41(6), 1126–1136. 10.1111/jbi.12274 DOI
Chen, I. C. , Hill, J. K. , Ohlemüller, R. , Roy, D. B. , & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026. 10.1126/science.1206432 PubMed DOI
Chevalier, M. , Zarzo‐Arias, A. , Guélat, J. , Mateo, R. G. , & Guisan, A. (2022). Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology and Evolution, 760, 944116. 10.3389/fevo.2022.944116 DOI
Cromsigt, J. P. G. M. , Kerley, G. I. H. , & Kowalczyk, R. (2012). The difficulty of using species distribution modelling for the conservation of refugee species ‐ the example of European bison. Diversity and Distributions, 18(12), 1253–1257. 10.1111/j.1472-4642.2012.00927.x DOI
Crous, C. J. , Burgess, T. I. , Le Roux, J. J. , Richardson, D. M. , Slippers, B. , & Wingfield, M. J. (2017). Ecological disequilibrium drives insect pest and pathogen accumulation in non‐native trees. AoB Plants, 9(1), 1–16. 10.1093/aobpla/plw081 PubMed DOI PMC
Dambrine, E. , Dupouey, J. L. , Laüt, L. , Humbert, L. , Thinon, M. , Beaufils, T. , & Richard, H. (2007). Present forest biodiversity patterns in France related to former roman agriculture. Ecology, 88(6), 1430–1439. 10.1890/05-1314 PubMed DOI
De Knegt, H. J. , Van Langevelde, F. , Coughenour, M. B. , Skidmore, A. K. , De Boer, W. F. , Heitkönig, I. M. A. , Knox, N. M. , Slotow, R. , Van Der Waal, C. , & Prins, H. H. T. (2010). Spatial autocorrelation and the scaling of species‐environment relationships. Ecology, 91(8), 2455–2465. 10.1890/09-1359.1 PubMed DOI
de Koening, K. , Broekhuijsen, J. , Kühn, I. , Ovaskainen, O. , Taubert, F. , Endresen, D. , Schigel, D. , & Grimm, V. (2023). Digital twins: Dynamic model‐data fusion for ecology. Trends in Ecology and Evolution, 38(10), 916–926. 10.1016/j.tree.2023.04.010. PubMed DOI
Decker, R. R. , Baskett, M. L. , & Hastings, A. (2021). Trailing‐edge zombie forests can increase population persistence in the face of climate change. bioRxiv, 2021(12), 471250. 10.1101/2021.12.07.471250 DOI
Devictor, V. , Van Swaay, C. , Brereton, T. , Brotons, L. , Chamberlain, D. , Heliölö, J. , Herrando, S. , Julliard, R. , Kuussaari, M. , Lindström, Å. , Reif, J. , Roy, D. B. , Schweiger, O. , Settele, J. , Stefanescu, C. , Van Strien, A. , Van Turnhout, C. , Vermouzek, Z. , WallisDeVries, M. , … Jiguet, F. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2(2), 121–124. 10.1038/nclimate1347 DOI
Díaz, S. , Settele, J. , Brondízio, E. S. , Ngo, H. T. , Agard, J. , Arneth, A. , Balvanera, P. , Brauman, K. A. , Butchart, S. H. M. , Chan, K. M. A. , Lucas, A. G. , Ichii, K. , Liu, J. , Subramanian, S. M. , Midgley, G. F. , Miloslavich, P. , Molnár, Z. , Obura, D. , Pfaff, A. , … Zayas, C. N. (2019). Pervasive human‐driven decline of life on earth points to the need for transformative change. Science, 366(6471), eaax3100. 10.1126/science.aax3100 PubMed DOI
Dobson, R. , Challinor, A. J. , Cheke, R. A. , Jennings, S. , Willis, S. G. , & Dallimer, M. (2023). dynamicSDM: An R package for species geographical distribution and abundance modelling at high spatiotemporal resolution. Methods in Ecology and Evolution, 1–10, 1190–1199. 10.1111/2041-210X.14101 DOI
Dormann, C. , McPherson, J. , Araújo, M. , Bivand, R. , Bolliger, J. , Carl, G. , Davies, R. , Hirzel, A. , Jetz, W. , Daniel Kissling, W. , Kühn, I. , Ohlemüller, R. , Peres‐Neto, P. R. , Reineking, B. , Schröder, B. , Schurr, F. M. , & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. 10.1111/j.2007.0906-7590.05171.x DOI
Dormann, C. F. , Schymanski, S. J. , Cabral, J. , Chuine, I. , Graham, C. , Hartig, F. , Kearney, M. , Morin, X. , Römermann, C. , Schröder, B. , & Singer, A. (2012). Correlation and process in species distribution models: Bridging a dichotomy. Journal of Biogeography, 39(12), 2119–2131. 10.1111/j.1365-2699.2011.02659.x DOI
Downey, P. O. , & Richardson, D. M. (2016). Alien plant invasions and native plant extinctions: A six‐threshold framework. AoB Plants, 8, plw047. 10.1093/aobpla/plw047 PubMed DOI PMC
Dullinger, S. , Essl, F. , Rabitsch, W. , Erb, K. H. , Gingrich, S. , Haberl, H. , Hülber, K. , Jarošík, V. , Krausmann, F. , Kuḧn, I. , Pergl, J. , Pyšek, P. , & Hulme, P. E. (2013). Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7342–7347. 10.1073/pnas.1216303110 PubMed DOI PMC
Dullinger, S. , Kleinbauer, I. , Peterseil, J. , Smolik, M. , & Essl, F. (2009). Niche based distribution modelling of an invasive alien plant: Effects of population status, propagule pressure and invasion history. Biological Invasions, 11(10), 2401–2414. 10.1007/s10530-009-9424-5 DOI
Early, R. , & Sax, D. F. (2014). Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23(12), 1356–1365. 10.1111/geb.12208 DOI
Elith, J. , & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. 10.1146/annurev.ecolsys.110308.120159 DOI
Ellis, E. C. , Goldewijk, K. K. , Siebert, S. , Lightman, D. , & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19(5), 589–606. 10.1111/j.1466-8238.2010.00540.x DOI
Erb, K. H. , Fetzel, T. , Plutzar, C. , Kastner, T. , Lauk, C. , Mayer, A. , Niedertscheider, M. , Körner, C. , & Haberl, H. (2016). Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 9(9), 674–678. 10.1038/ngeo2782 DOI
Eriksson, O. (1996). Regional dynamics of plants: A review of evidence for remnant, source‐sink and metapopulations. Oikos, 77(2), 248–258. https://about.jstor.org/terms
Essl, F. , Dullinger, S. , Genovesi, P. , Hulme, P. E. , Jeschke, J. M. , Katsanevakis, S. , Kuhn, I. , Lenzner, B. , Pauchard, A. , Pysek, P. , Rabitsch, W. , Richardson, D. M. , Seebens, H. , van Kleunen, M. , van der Putten, W. H. , Vila, M. , & Bacher, S. (2019). A conceptual framework for range‐expanding species that track human‐induced environmental change. Bioscience, 69(11), 908–919. 10.1093/biosci/biz101 DOI
Essl, F. , Dullinger, S. , Rabitsch, W. , Hulme, P. E. , Pyšek, P. , Wilson, J. R. U. , & Richardson, D. M. (2015). Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 21(5), 534–547. 10.1111/ddi.12312 DOI
Fricke, E. C. , Ordonez, A. , Rogers, H. S. , & Svenning, J.‐C. (2022). The effects of defaunation on plants' capacity to track climate change. Science, 375, 210–214. PubMed
García‐Rodríguez, A. , Lenzner, B. , Marino, C. , Liu, C. , Velasco, J. A. , Bellard, C. , Jeschke, J. M. , Seebens, H. , & Essl, F. (2023). Patterns and drivers of climatic niche dynamics during biological invasions of Island‐endemic amphibians, reptiles, and birds. Global Change Biology, 29, 4924–4938. 10.1111/gcb.16849 PubMed DOI PMC
Gaüzère, P. , & Devictor, V. (2021). Mismatches between birds' spatial and temporal dynamics reflect their delayed response to global changes. Oikos, 130(8), 1284–1296. 10.1111/oik.08289 DOI
Gilbert, N. A. , Stenglein, J. L. , Pauli, J. N. , & Zuckerberg, B. (2022). Human disturbance compresses the spatiotemporal niche. Proceedings of the National Academy of Sciences of the United States of America, 119(52), e2206339119. 10.1073/pnas.2206339119 PubMed DOI PMC
Guisan, A. , Petitpierre, B. , Broennimann, O. , Daehler, C. , & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260–269. 10.1016/j.tree.2014.02.009 PubMed DOI
Guisan, A. , & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. 10.1111/j.1461-0248.2005.00792.x PubMed DOI
Guisan, A. , Thuiller, W. , & Zimmermann, N. E. (2017). Habitat suitability and distribution models. Cambridge University Press. 10.1017/9781139028271 DOI
Halfwerk, W. , & Jerem, P. (2021). A systematic review of research investigating the combined ecological impact of anthropogenic noise and artificial light at night. Frontiers in Ecology and Evolution, 9, 765950. 10.3389/fevo.2021.765950 DOI
Harwood, T. D. , Mokany, K. , & Paini, D. R. (2014). Microclimate is integral to the modeling of plant responses to macroclimate. Proceedings of the National Academy of Sciences of the United States of America, 111(13), E1164–E1165. 10.1073/pnas.1400069111 PubMed DOI PMC
Hattab, T. , Garzón‐López, C. X. , Ewald, M. , Skowronek, S. , Aerts, R. , Horen, H. , Brasseur, B. , Gallet‐Moron, E. , Spicher, F. , Decocq, G. , Feilhauer, H. , Honnay, O. , Kempeneers, P. , Schmidtlein, S. , Somers, B. , Van De Kerchove, R. , Rocchini, D. , & Lenoir, J. (2017). A unified framework to model the potential and realized distributions of invasive species within the invaded range. Diversity and Distributions, 23(7), 806–819. 10.1111/ddi.12566 DOI
Hill, A. P. , Nolan, C. J. , Hemes, K. S. , Cambron, T. W. , & Field, C. B. (2023). Low‐elevation conifers in California's Sierra Nevada are out of equilibrium with climate. PNAS Nexus, 2(2), pgad004. 10.1093/pnasnexus/pgad004 PubMed DOI PMC
Hoegh‐Guldberg, O. , Mumby, P. J. , Hooten, A. J. , Steneck, R. S. , Greenfield, P. , Gomez, E. , Harvell, C. D. , Sale, P. F. , Edwards, A. J. , Caldeira, K. , Knowlton, N. , Eakin, C. M. , Iglesias‐Prieto, R. , Muthiga, N. , Bradbury, R. H. , Dubi, A. , & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737–1742. 10.1126/science.1152509 PubMed DOI
Hui, C. (2023). The dos and don'ts for predicting invasion dynamics with species distribution models. Biological Invasions, 25, 947–953. 10.1007/s10530-022-02976-3 DOI
Inamine, H. , Miller, A. , Roxburgh, S. , Buckling, A. , & Shea, K. (2022). Pulse and press disturbances have different effects on transient community dynamics. American Naturalist, 200(4), 571–583. 10.1086/720618 PubMed DOI
IPBES . (2019). In Díaz S., Settele J., Brondízio E. S., Ngo H. T., Guèze M., Agard J., Arneth A., Balvanera P., Brauman K. A., Butchart S. H. M., Zayas C. N., Shin Y. J., Chowdhury Z. J. R., Reyers B., Purvis A., Polasky S., Pfaff A., Obura D., Molnár Z., … Willis K. J. (Eds.), Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat.
Kuussaari, M. , Bommarco, R. , Heikkinen, R. K. , Helm, A. , Krauss, J. , Lindborg, R. , Öckinger, E. , Pärtel, M. , Pino, J. , Rodà, F. , Stefanescu, C. , Teder, T. , Zobel, M. , & Steffan‐Dewenter, I. (2009). Extinction debt: A challenge for biodiversity conservation. Trends in Ecology and Evolution, 24(10), 564–571. 10.1016/j.tree.2009.04.011 PubMed DOI
Leathwick, J. R. , & Austin, M. P. (2001). Competitive interactions between tree species in New Zealand's old‐growth indigenous forests. Ecology, 82(9), 2560–2573. 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2 DOI
Leclère, D. , Obersteiner, M. , Barrett, M. , Butchart, S. H. M. , Chaudhary, A. , De Palma, A. , DeClerck, F. A. J. , Di Marco, M. , Doelman, J. C. , Dürauer, M. , Freeman, R. , Harfoot, M. , Hasegawa, T. , Hellweg, S. , Hilbers, J. P. , Hill, S. L. L. , Humpenöder, F. , Jennings, N. , Krisztin, T. , … Young, L. (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585(7826), 551–556. 10.1038/s41586-020-2705-y PubMed DOI
Lembrechts, J. J. , Nijs, I. , & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267–1279. 10.1111/ecog.03947 DOI
Lenoir, J. , Bertrand, R. , Comte, L. , Bourgeaud, L. , Hattab, T. , Murienne, J. , & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 4(8), 1044–1059. 10.1038/s41559-020-1198-2 PubMed DOI
Lenoir, J. , Hattab, T. , & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography, 40(2), 253–266. 10.1111/ecog.02788 DOI
Loarie, S. R. , Duffy, P. B. , Hamilton, H. , Asner, G. P. , Field, C. B. , & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052–1055. 10.1038/nature08649 PubMed DOI
Lucas, P. M. , Thuiller, W. , Talluto, M. V. , Polaina, E. , Albrecht, J. , Selva, N. , De Barba, M. , Maiorano, L. , Penteriani, V. , Guéguen, M. , Balkenhol, N. , Dutta, T. , Fedorca, A. , Frank, S. C. , Zedrosser, A. , Afonso‐Jordana, I. , Ambarlı, H. , Ballesteros, F. , Bashta, A.‐T. , … Pollock, L. J. (2023). Including biotic interactions in species distribution models improves the understanding of species niche: A case of study with the brown bear in Europe. bioRxiv, 2023(3).
Meyer, C. , Jetz, W. , Guralnick, R. P. , Fritz, S. A. , & Kreft, H. (2016). Range geometry and socio‐economics dominate species‐level biases in occurrence information. Global Ecology and Biogeography, 25(10), 1181–1193. 10.1111/geb.12483 DOI
Meyer, C. , Weigelt, P. , & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19(8), 992–1006. 10.1111/ele.12624 PubMed DOI
Milanesi, P. , Della Rocca, F. , & Robinson, R. A. (2020). Integrating dynamic environmental predictors and species occurrences: Toward true dynamic species distribution models. Ecology and Evolution, 10(2), 1087–1092. 10.1002/ece3.5938 PubMed DOI PMC
Nimmo, D. G. , Mac Nally, R. , Cunningham, S. C. , Haslem, A. , & Bennett, A. F. (2015). Vive la résistance: Reviving resistance for 21st century conservation. Trends in Ecology and Evolution, 30(9), 516–523. 10.1016/j.tree.2015.07.008 PubMed DOI
Nüchel, J. , Bøcher, P. K. , Xiao, W. , Zhu, A. X. , & Svenning, J. C. (2018). Snub‐nosed monkeys (Rhinopithecus): Potential distribution and its implication for conservation. Biodiversity and Conservation, 27(6), 1517–1538. 10.1007/s10531-018-1507-0 PubMed DOI PMC
Pacheco‐Riaño, L. C. , Høistad Schei, F. , Flantua, S. G. A. , & Grytnes, J. (2023). Lags in the response of plant assemblages to global warming depends on temperature‐change velocity. Global Ecology and Biogeography., 32, 719–733. 10.1111/geb.13653 DOI
Page, L. M. , Macfadden, B. J. , Fortes, J. A. , Soltis, P. S. , & Riccardi, G. (2015). Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience, 65(9), 841–842. 10.1093/biosci/biv104 DOI
Pearson, R. G. , & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful ? Ecology, 12(5), 361–371.
Piirainen, S. , Lehikoinen, A. , Husby, M. , Kålås, J. A. , Lindström, Å. , & Ovaskainen, O. (2023). Species distributions models may predict accurately future distributions but poorly how distributions change: A critical perspective on model validation. Diversity and Distributions., 29, 654–665. 10.1111/ddi.13687 DOI
Polaina, E. , González‐Suárez, M. , & Revilla, E. (2019). The legacy of past human land use in current patterns of mammal distribution. Ecography, 42(10), 1623–1635. 10.1111/ecog.04406 DOI
Pörtner, H. O. , Roberts, C. D. , Adams, H. , Adler, C. , Aldunce, P. , & Elham, A. (2022). Climate Change 2022: Impacts, adaptation and vulnerability. Summary for Policymakers . https://www.ipcc.ch/report/ar6/wg2
Potter, K. A. , Arthur Woods, H. , & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19(10), 2932–2939. 10.1111/gcb.12257 PubMed DOI
Reside, A. E. , VanDerWal, J. J. , Kutt, A. S. , & Perkins, G. C. (2010). Weather, not climate, defines distributions of vagile bird species. PLoS One, 5(10), e13569. PubMed PMC
Riva, F. , & Fahrig, L. (2023). Landscape‐scale habitat fragmentation is positively related to biodiversity, despite patch‐scale ecosystem decay. Ecology Letters, 26(2), 268–277. 10.1111/ele.14145 PubMed DOI
Roubicek, A. J. , VanDerWal, J. , Beaumont, L. J. , Pitman, A. J. , Wilson, P. , & Hughes, L. (2010). Does the choice of climate baseline matter in ecological niche modelling? Ecological Modelling, 221(19), 2280–2286. 10.1016/j.ecolmodel.2010.06.021 DOI
Rumpf, S. B. , Hülber, K. , Wessely, J. , Willner, W. , Moser, D. , Gattringer, A. , Klonner, G. , Zimmermann, N. E. , & Dullinger, S. (2019). Extinction debts and colonization credits of non‐forest plants in the European Alps. Nature Communications, 10(1), 4293. 10.1038/s41467-019-12343-x PubMed DOI PMC
Rumpf, S. B. , Hülber, K. , Zimmermann, N. E. , & Dullinger, S. (2019). Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 28(4), 533–543. 10.1111/geb.12865 DOI
Sales, L. P. , Galetti, M. , Carnaval, A. , Monsarrat, S. , Svenning, J. C. , & Pires, M. M. (2022). The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Global Change Biology, 28(11), 3683–3693. 10.1111/gcb.16145 PubMed DOI
Sánchez‐Bayo, F. , & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8–27. 10.1016/j.biocon.2019.01.020 DOI
Sanchez‐Martinez, P. , Marcer, A. , Mayol, M. , & Riba, M. (2021). Shaping the niche of Taxus baccata, a modelling exercise using biologically meaningful information. Forest Ecology and Management, 501, 119688. 10.1016/j.foreco.2021.119688 DOI
Scheele, B. C. , Foster, C. N. , Banks, S. C. , & Lindenmayer, D. B. (2017). Niche contractions in declining species: Mechanisms and consequences. Trends in Ecology and Evolution, 32(5), 346–355. 10.1016/j.tree.2017.02.013 PubMed DOI
Scherrer, D. , & Körner, C. (2011). Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38(2), 406–416. 10.1111/j.1365-2699.2010.02407.x DOI
Seebens, H. , Bacher, S. , Blackburn, T. M. , Capinha, C. , Dawson, W. , Dullinger, S. , Genovesi, P. , Hulme, P. E. , van Kleunen, M. , Kuehn, I. , Jeschke, J. M. , Lenzner, B. , Liebhold, A. M. , Pattison, Z. , Pergl, J. , Pysek, P. , Winter, M. , & Essl, F. (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27(5), 970–982. 10.1111/gcb.15333 PubMed DOI
Seebens, H. , Blackburn, T. M. , Dyer, E. E. , Genovesi, P. , Hulme, P. E. , Jeschke, J. M. , Pagad, S. , Pyšek, P. , Winter, M. , Arianoutsou, M. , Bacher, S. , Blasius, B. , Brundu, G. , Capinha, C. , Celesti‐Grapow, L. , Dawson, W. , Dullinger, S. , Fuentes, N. , Jäger, H. , … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 1–9. 10.1038/ncomms14435 PubMed DOI PMC
Seliger, B. J. , McGill, B. J. , Svenning, J. C. , & Gill, J. L. (2021). Widespread underfilling of the potential ranges of north American trees. Journal of Biogeography, 48(2), 359–371. 10.1111/jbi.14001 DOI
Smith, V. S. , & Blagoderov, V. (2012). Bringing collections out of the dark. ZooKeys, 209, 1–6. 10.3897/zookeys.209.3699 PubMed DOI PMC
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123. 10.1111/j.1461-0248.2007.01107.x PubMed DOI
Soltis, D. E. , Soltis, P. S. , Soltis, D. E. , Soltis, P. S. , & Soltis, D. E. (2016). Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity. Plant Diversity, 38(6), 264–270. 10.1016/j.pld.2016.12.001 PubMed DOI PMC
Srivastava, V. , Lafond, V. , & Griess, V. C. (2019). Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Reviews, 14, 1–13. 10.1079/PAVSNNR201914020 DOI
Staude, I. R. , Waller, D. M. , Bernhardt‐Römermann, M. , Bjorkman, A. D. , Brunet, J. , De Frenne, P. , Hédl, R. , Jandt, U. , Lenoir, J. , Máliš, F. , Verheyen, K. , Wulf, M. , Pereira, H. M. , Vangansbeke, P. , Ortmann‐Ajkai, A. , Pielech, R. , Berki, I. , Chudomelová, M. , Decocq, G. , … Baeten, L. (2020). Replacements of small‐ by large‐ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 4(6), 802–808. 10.1038/s41559-020-1176-8 PubMed DOI
Steffen, W. , Rockström, J. , Richardson, K. , Lenton, T. M. , Folke, C. , Liverman, D. , Summerhayes, C. P. , Barnosky, A. D. , Cornell, S. E. , Crucifix, M. , Donges, J. F. , Fetzer, I. , Lade, S. J. , Scheffer, M. , Winkelmann, R. , & Schellnhuber, H. J. (2018). Trajectories of the earth system in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33), 8252–8259. 10.1073/pnas.1810141115 PubMed DOI PMC
Stevens, C. J. , David, T. I. , & Storkey, J. (2018). Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology, 32(7), 1757–1769. 10.1111/1365-2435.13063 DOI
Stickley, S. F. , & Fraterrigo, J. M. (2023). Microclimate species distribution models estimate lower levels of climate‐related habitat loss for salamanders. Journal for Nature Conservation, 72, 126333. 10.1016/j.jnc.2023.126333 DOI
Strayer, D. L. , D'Antonio, C. M. , Essl, F. , Fowler, M. S. , Geist, J. , Hilt, S. , Jaric, I. , Johnk, K. , Jones, C. G. , Lambin, X. , Latzka, A. W. , Pergl, J. , Pysek, P. , Robertson, P. , von Schmalensee, M. , Stefansson, R. A. , Wright, J. , & Jeschke, J. M. (2017). Boom‐bust dynamics in biological invasions: Towards an improved application of the concept. Ecology Letters, 20(10), 1337–1350. 10.1111/ele.12822 PubMed DOI
Svenning, J. C. , Gravel, D. , Holt, R. D. , Schurr, F. M. , Thuiller, W. , Münkemüller, T. , Schiffers, K. H. , Dullinger, S. , Edwards, T. C. , Hickler, T. , Higgins, S. I. , Nabel, J. E. M. S. , Pagel, J. , & Normand, S. (2014). The influence of interspecific interactions on species range expansion rates. Ecography, 37(12), 1198–1209. 10.1111/j.1600-0587.2013.00574.x PubMed DOI PMC
Svenning, J. C. , & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 100(7), 1266–1286. 10.3732/ajb.1200469 PubMed DOI
Svenning, J. C. , & Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 7(7), 565–573. 10.1111/j.1461-0248.2004.00614.x DOI
Talluto, M. V. , Boulangeat, I. , Ameztegui, A. , Aubin, I. , Berteaux, D. , Butler, A. , Doyon, F. , Drever, C. R. , Fortin, M. J. , Franceschini, T. , Liénard, J. , Mckenney, D. , Solarik, K. A. , Strigul, N. , Thuiller, W. , & Gravel, D. (2016). Cross‐scale integration of knowledge for predicting species ranges: A metamodelling framework. Global Ecology and Biogeography, 25(2), 238–349. 10.1111/geb.12395 PubMed DOI PMC
Thuiller, W. , Guéguen, M. , Bison, M. , Duparc, A. , Garel, M. , Loison, A. , Renaud, J. , & Poggiato, G. (2018). Combining point‐process and landscape vegetation models to predict large herbivore distributions in space and time—A case study of Rupicapra rupicapra. Diversity and Distributions, 24(3), 352–362. 10.1111/ddi.12684 DOI
Thuiller, W. , Lafourcade, B. , Engler, R. , & Araújo, M. B. (2009). BIOMOD ‐ a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373. 10.1111/j.1600-0587.2008.05742.x DOI
Wagner, V. , Večeřa, M. , Jiménez‐Alfaro, B. , Pergl, J. , Lenoir, J. , Svenning, J. C. , Pyšek, P. , Agrillo, E. , Biurrun, I. , Campos, J. A. , Ewald, J. , Fernández‐González, F. , Jandt, U. , Rašomavičius, V. , Šilc, U. , Škvorc, Ž. , Vassilev, K. , Wohlgemuth, T. , & Chytrý, M. (2021). Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 32(2), e13014. 10.1111/jvs.13014 DOI
Wang‐Erlandsson, L. , Tobian, A. , van der Ent, R. J. , Fetzer, I. , te Wierik, S. , Porkka, M. , Staal, A. , Jaramillo, F. , Dahlmann, H. , Singh, C. , Greve, P. , Gerten, D. , Keys, P. W. , Gleeson, T. , Cornell, S. E. , Steffen, W. , Bai, X. , & Rockström, J. (2022). A planetary boundary for green water. Nature Reviews Earth and Environment, 3(6), 380–392. 10.1038/s43017-022-00287-8 DOI
Williams, B. A. , Venter, O. , Allan, J. R. , Atkinson, S. C. , Rehbein, J. A. , Ward, M. , Di Marco, M. , Grantham, H. S. , Ervin, J. , Goetz, S. J. , Hansen, A. J. , Jantz, P. , Pillay, R. , Rodríguez‐Buriticá, S. , Supples, C. , Virnig, A. L. S. , & Watson, J. E. M. (2020). Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth, 3(3), 371–382. 10.1016/j.oneear.2020.08.009 DOI
Yates, K. L. , Bouchet, P. J. , Caley, M. J. , Mengersen, K. , Randin, C. F. , Parnell, S. , Fielding, A. H. , Bamford, A. J. , Ban, S. , Barbosa, A. M. , Dormann, C. F. , Elith, J. , Embling, C. B. , Ervin, G. N. , Fisher, R. , Gould, S. , Graf, R. F. , Gregr, E. J. , Halpin, P. N. , … Sequeira, A. M. M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology and Evolution, 33(10), 790–802. 10.1016/j.tree.2018.08.001 PubMed DOI
Zellweger, F. , de Frenne, P. , Lenoir, J. , Vangansbeke, P. , Verheyen, K. , Bernhardt‐Römermann, M. , Baeten, L. , Hédl, R. , Berki, I. , Brunet, J. , van Calster, H. , Chudomelová, M. , Decocq, G. , Dirnböck, T. , Durak, T. , Heinken, T. , Jaroszewicz, B. , Kopecký, M. , Máliš, F. , … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772–775. 10.1126/science.aba6880 PubMed DOI