Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome

. 2020 Jun ; 4 (6) : 802-808. [epub] 20200413

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32284580
Odkazy

PubMed 32284580
DOI 10.1038/s41559-020-1176-8
PII: 10.1038/s41559-020-1176-8
Knihovny.cz E-zdroje

Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.

Białowieża Geobotanical Station Faculty of Biology University of Warsaw Warszawa Poland

Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden

Department of Botany Faculty of Biological Sciences University of Wrocław Wrocław Poland

Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czech Republic

Department of Botany University of Wisconsin Madison WI USA

Department of Forest Biodiversity Faculty of Forestry University of Agriculture in Kraków Kraków Poland

Department of Forestry and Renewable Forest Resources University of Ljubljana Ljubljana Slovenia

Department of Hidrobiology University of Pécs Szekszárd Hungary

Department of Plant Physiology and Ecology University of Rzeszów Rzeszów Poland

Department of Plant Systematics Ecology and Theoretical Biology Institute of Biology L Eötvös University Budapest Hungary

Department of Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

Environment Agency Austria Vienna Austria

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Kamýcká Czech Republic

Faculty of Forestry Institute of Environmental and Earth Sciences University of Sopron Sopron Hungary

Faculty of Forestry Technical University in Zvolen Zvolen Slovakia

Forest and Nature Lab Ghent University Gontrode Belgium

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Institute for Regional Development University of Pécs Szekszárd Hungary

Institute of Biochemistry and Biology University of Potsdam Potsdam Germany

Institute of Biology Martin Luther University Halle Wittenberg Halle Germany

Institute of Botany Czech Academy of Sciences Brno Czech Republic

Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic

Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany

Leibniz Centre Centre for Agricultural Landscape Research Müncheberg Germany

MTA DE Lendület Functional and Restoration Ecology Research Group University of Debrecen Debrecen Hungary

Museum of Natural History University of Wrocław Wrocław Poland

National Forest Centre Zvolen Slovakia

Norwegian Institute of Bioeconomy Research Division of Forest and Forest Resources Bergen Norway

Research Institute for Nature and Forest Brussels Belgium

Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden

UMR 7058 CNRS EDYSAN Ecologie et Dynamique des Systèmes Anthropisés Jules Verne University of Picardie Amiens France

Zobrazit více v PubMed

Barnosky, A. D. et al. Has the earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011). PubMed DOI PMC

Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Advance Unedited Version) (IPBES Secretariat, 2019).

Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012). DOI

Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013). PubMed DOI

Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014). PubMed DOI

Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2017). PubMed DOI

Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015). PubMed DOI

Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019). PubMed DOI

Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018). DOI

Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016). PubMed DOI

Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015). PubMed DOI PMC

Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984). DOI

Gaston, K. J. The multiple forms of the interspecific abundance–distribution relationship. Oikos 76, 211–220 (1996). DOI

Gaston, K. J. et al. Abundance–occupancy relationships. J. Appl. Ecol. 37, 39–59 (2000). DOI

Schoener, T. W. & Spiller, D. A. High population persistence in a system with high turnover. Nature 330, 474–477 (1987). DOI

Kambach, S. et al. Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography (Cop.) 42, 467–477 (2019). DOI

Berendse, F. & Aerts, R. Nitrogen-use-efficiency: a biologically meaningful definition? Funct. Ecol. 1, 293–296 (1987).

Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004). DOI

Aber, J. D. et al. Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience 53, 375–389 (2003). DOI

Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006). DOI

Aber, J. et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48, 921–934 (1998). DOI

Tian, D., Wang, H., Sun, J. & Niu, S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 11, 24012 (2016). DOI

Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008). PubMed DOI

Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004). PubMed DOI

Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009). PubMed DOI

Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010). PubMed DOI

Clark, C. M. et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants 5, 697–705 (2019). PubMed DOI

Ortmann-Ajkai, A. et al. Twenty-years’ changes of wetland vegetation: effects of floodplain-level threats. Wetlands 38, 591–604 (2018). DOI

Hernández, D. L. et al. Nitrogen pollution is linked to US listed species declines. BioScience 66, 213–222 (2016). DOI

Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016). PubMed DOI

Sonkoly, J. et al. Do large-seeded herbs have a small range size? The seed mass–distribution range trade-off hypothesis. Ecol. Evol. 7, 11204–11212 (2017). PubMed DOI PMC

Bartelheimer, M. & Poschlod, P. Functional characterizations of Ellenberg indicator values—a review on ecophysiological determinants. Funct. Ecol. 30, 506–516 (2016). DOI

Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977). DOI

Grotkopp, E., Rejmánek, M. & Rost, T. L. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am. Nat. 159, 396–419 (2002). PubMed DOI

Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge Univ. Press, 2005).

Van der Veken, S., Bellemare, J., Verheyen, K. & Hermy, M. Life-history traits are correlated with geographical distribution patterns of western European forest herb species. J. Biogeogr. 34, 1723–1735 (2007). DOI

McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999). PubMed DOI

Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982). DOI

Wright, D. H. Correlations between incidence and abundance are expected by chance. J. Biogeogr. 18, 463–466 (1991). DOI

Mason, H. L. The edaphic factor in narrow endemism. I. The nature of environmental influences. Madroño 8, 209–226 (1946).

Sandel, B. S. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011). PubMed DOI

Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).

Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005). PubMed DOI

Rabinowitz, D., Cairns, S. & Dillon, T. in Conservation Biology: The Science of Scarcity and Diversity (ed. Soulé, M. E.) 182–204 (Sinauer Associates, 1986).

Köckemann, B., Buschmann, H. & Leuschner, C. The relationships between abundance, range size and niche breadth in Central European tree species. J. Biogeogr. 36, 854–864 (2009). DOI

Thompson, K., Hodgson, J. G. & Gaston, K. J. Abundance–range size relationships in the herbaceous flora of central England. J. Ecol. 86, 439–448 (1998). DOI

Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012). DOI

Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Change Biol. 20, 429–440 (2014). DOI

Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Change Biol. 21, 3726–3737 (2015). DOI

Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014). PubMed DOI

Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009). PubMed DOI

De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019). PubMed DOI

De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013). PubMed DOI

Amann, M. et al. Progress towards the Achievement of the EU’s Air Quality and Emissions Objectives (IIASA, 2018).

Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015). PubMed DOI

Isbell, F., Tilman, D., Polasky, S., Binder, S. & Hawthorne, P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 16, 454–460 (2013). PubMed DOI

Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. BioScience 67, 73–83 (2016). PubMed DOI PMC

Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).

Beck, J., Takano, H., Ballesteros-Mejia, L., Kitching, I. J. & McCain, C. M. Field sampling is biased against small-ranged species of high conservation value: a case study on the sphingid moths of East Africa. Biodivers. Conserv. 27, 3533–3544 (2018). DOI

Verheyen, K. et al. Observer and relocation errors matter in resurveys of historical vegetation plots. J. Veg. Sci. 29, 812–823 (2018). DOI

Kopecký, M. & Macek, M. Vegetation resurvey is robust to plot location uncertainty. Divers. Distrib. 21, 322–330 (2015). PubMed DOI PMC

GBIF Occurrence Download (GBIF, accessed 18 January 2019); https://doi.org/10.15468/dl.l1r0yg

Chamberlain, S. scrubr: clean biological occurrence records (R package v.0.1, 2016).

Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009). DOI

Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015). DOI

Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016). PubMed DOI

Hultén, E., et al. Atlas of North European Vascular Plants North of the Tropic of Cancer (Koeltz Scientific, 1986).

Meusel, H., Jäger, E. J. & Weinert, E. Vergleichende Chorologie der Zentraleuropaischen Flora (Gustav Fischer, 1965).

Berg, C., Welk, E. & Jäger, E. J. Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Appl. Veg. Sci. 20, 482–493 (2017). DOI

Stevens, C. J. et al. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ. Pollut. 159, 665–676 (2011). PubMed DOI

van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016). PubMed DOI

Dorland, E. et al. Differential effects of oxidised and reduced nitrogen on vegetation and soil chemistry of species-rich acidic grasslands. Water, Air, Soil Pollut. 224, 1664 (2013). DOI

Gauss, M. et al. EMEP MSC-W Model Performance for Acidifying and Eutrophying Components, Photo-oxidants and Particulate Matter in 2017 (Supplementary Material to EMEP Status Report, 2019).

Asman, W. A. H. Factors influencing local dry deposition of gases with special reference to ammonia. Atmos. Environ. 32, 415–421 (1998). DOI

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Goltze, 2001).

Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003). DOI

McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, CRC, 2018).

Peterson, R. A. bestNormalize: normalizing transformation functions (R package v.1.2.0, 2018).

Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001). DOI

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013). PubMed DOI

Pearl, J. Causality 2nd edn (Cambridge Univ. Press, 2009).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Potential sources of time lags in calibrating species distribution models

. 2024 Jan ; 51 (1) : 89-102. [epub] 20230928

Divergent roles of herbivory in eutrophying forests

. 2022 Dec 22 ; 13 (1) : 7837. [epub] 20221222

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.10110713.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...