Divergent roles of herbivory in eutrophying forests
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36550094
PubMed Central
PMC9780218
DOI
10.1038/s41467-022-35282-6
PII: 10.1038/s41467-022-35282-6
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- býložravci * MeSH
- dusík MeSH
- lesy * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.
CIBIO Universidade do Porto Porto Portugal
Department of Biology University of West Florida Pensacola FL USA
Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czech Republic
Department of Botany University of Wisconsin Madison Madison WI USA
Environment Agency Austria Spittelauer Lände 5 1090 Vienna Austria
Faculty of Forestry Technical University in Zvolen Zvolen Slovakia
Forest and Nature Lab Ghent University Gontrode Belgium
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Biology Leipzig University Leipzig Germany
Institute of Biology Martin Luther University Halle Wittenberg Halle Germany
Institute of Biology University of Pécs Pécs Hungary
Institute of Botany Czech Academy of Sciences Brno Czech Republic
Institute of Botany Faculty of Biology Jagiellonian University Kraków Poland
Institute of Botany of the Czech Academy of Sciences Zámek 1 CZ 252 43 Pruhonice Czech Republic
Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany
Leibniz Centre for Agricultural Landscape Research Muencheberg Germany
Leibniz Centre for Agricultural Landscape Research Research Area 2 Müncheberg Germany
MTA DE Biodiversity and Ecosystem Services Research Group Egyetem tér 1 H 4032 Debrecen Hungary
Museum of Natural History University of Wroclaw Sienkiewicza 21 PL 50 335 Wroclaw Poland
National Forest Centre Zvolen Slovakia
Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden
University of Potsdam Institute of Biochemistry and Biology Maulbeerallee 3 14469 Potsdam Germany
Zobrazit více v PubMed
FAO. Global forest resources assessment. www.fao.org/publications (2015).
Finlayson, M. et al. A Report of the Millennium Ecosystem Assessment. (The Cropper Foundation, 2005).
Lal, R., & Lorenz, K. In Recarbonizationof theBiosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U. & von Braun, J.) Ch. 9 (Springer, 2012).
Gilliam FS. Forest ecosystems of temperate climatic regions: from ancient use to climate change. N. Phytologist. 2016;212:871–887. doi: 10.1111/nph.14255. PubMed DOI
de Gouvenain, R. C. & Silander, J. A. Temperate forests in Reference Module in Life Sciences (Elsevier, 2017).
Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B: Biol. Sci. 2009;276:3539–3544. doi: 10.1098/rspb.2009.0938. PubMed DOI PMC
Rackham O. Ancient woodlands: modern threats. N. Phytologist. 2008;180:571–586. doi: 10.1111/j.1469-8137.2008.02579.x. PubMed DOI
Bernhardt-Römermann M, et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 2015;21:3726–3737. doi: 10.1111/gcb.12993. PubMed DOI PMC
Waller DM, Alverson WS. The white-tailed deer: a keystone herbivore. Wildl. Soc. Bull. 1997;25:217–226.
Ramirez JI. Uncovering the different scales in deer–forest interactions. Ecol. Evol. 2021;11:5017–5024. doi: 10.1002/ece3.7439. PubMed DOI PMC
Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol.18, 787–798 (2004).
Stockton SA, Allombert S, Gaston AJ, Martin JL. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv. 2005;126:118–128. doi: 10.1016/j.biocon.2005.06.006. DOI
Hegland SJ, Lilleeng MS, Moe SR. Old-growth forest floor richness increases with red deer herbivory intensity. Ecol. Manag. 2013;310:267–274. doi: 10.1016/j.foreco.2013.08.031. DOI
Simončič T, Bončina A, Jarni K, Klopčič M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 2019;30:108–120. doi: 10.1111/jvs.12702. DOI
Vild O, et al. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest. Appl. Veg. Sci. 2017;20:282–292. doi: 10.1111/avsc.12289. PubMed DOI PMC
Russell FL, Zippin DB, Fowler NL. Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. Am. Midl. Nat. 2001;146:1–26. doi: 10.1674/0003-0031(2001)146[0001:EOWTDO]2.0.CO;2. DOI
Öllerer K, et al. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biol. Conserv. 2019;237:209–219. doi: 10.1016/j.biocon.2019.07.007. DOI
Borer ET, et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 2020;11:1–8. doi: 10.1038/s41467-020-19870-y. PubMed DOI PMC
Kaarlejärvi E, Eskelinen A, Olofsson J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 2017;8:1–8. PubMed PMC
Simkin SM, et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA. 2016;113:4086–4091. doi: 10.1073/pnas.1515241113. PubMed DOI PMC
Bobbink R, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010;20:30–59. doi: 10.1890/08-1140.1. PubMed DOI
Reinecke J, Klemm G, Heinken T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 2014;25:113–121. doi: 10.1111/jvs.12069. DOI
Speed JDM, Austrheim G, Kolstad AL, Solberg EJ. Long-term changes in northern large-herbivore communities reveal differential rewilding rates in space and time. PLoS ONE. 2019;14:e0217166. doi: 10.1371/journal.pone.0217166. PubMed DOI PMC
Valente AM, Acevedo P, Figueiredo AM, Fonseca C, Torres RT. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mamm. Rev. 2020;50:353–366. doi: 10.1111/mam.12202. DOI
Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv.244, 108500 (2020).
Waller, D. M. The Herbaceous Layer in Forests of Eastern North America (ed. Gilliam, F.) Ch. 16 (Oxford Univ. Press, 2014).
Kerley, G. I. H., Kowalczyk, R. & Cromsigt, J. P. G. M. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography35, 519–529 (2011).
Svenning JC. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 2002;104:133–148. doi: 10.1016/S0006-3207(01)00162-8. DOI
Sandom CJ, Ejrnaes R, Hansen MDD, Svenning JC. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA. 2014;111:4162–4167. doi: 10.1073/pnas.1311014111. PubMed DOI PMC
Ramirez JI, Jansen PA, den Ouden J, Goudzwaard L, Poorter L. Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Ecol. Manag. 2019;432:478–488. doi: 10.1016/j.foreco.2018.09.049. DOI
Ramirez JI, Jansen PA, Poorter L. Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Ecol. Manag. 2018;424:406–419. doi: 10.1016/j.foreco.2018.05.016. DOI
Albert A, et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos. 2015;124:1109–1120. doi: 10.1111/oik.02512. DOI
McNaughton SJ. Grazing lawns: on domesticated and wild grazers. Am. Nat. 1986;128:937–939. doi: 10.1086/284615. DOI
Cromsigt JPGM, Kuijper DPJ. Revisiting the browsing lawn concept: evolutionary Interactions or pruning herbivores? Perspect. Plant Ecol. 2011;13:207–215. doi: 10.1016/j.ppees.2011.04.004. DOI
Ramirez JI, et al. Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry. 2021;94:502–511. doi: 10.1093/forestry/cpaa049. DOI
Boulanger V, et al. Ungulates increase forest plant species richness to the benefit of non‐forest specialists. Glob. Chang. Biol. 2018;24:e485–e495. doi: 10.1111/gcb.13899. PubMed DOI
Kirby KJ. The impact of deer on the ground flora of British broadleaved woodland. Forestry. 2001;74:219–229. doi: 10.1093/forestry/74.3.219. DOI
Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology91, 93–105 (2010). PubMed
Happonen K, et al. Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories. Glob. Ecol. Biogeogr. 2021;30:1863–1875. doi: 10.1111/geb.13351. DOI
Peñuelas J, Sardans J. The global nitrogen-phosphorus imbalance. Science. 2022;375:266–267. doi: 10.1126/science.abl4827. PubMed DOI
Staude IR, et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 2020;4:802–808. doi: 10.1038/s41559-020-1176-8. PubMed DOI
Newbold T, et al. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 2018;16:e2006841. doi: 10.1371/journal.pbio.2006841. PubMed DOI PMC
Verheyen K, et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Br. Ecol. Soc. J. Ecol. 2012;100:352–365.
Gilliam FS. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 2006;94:1176–1191. doi: 10.1111/j.1365-2745.2006.01155.x. DOI
de Schrijver A, et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2011;652:803–816. doi: 10.1111/j.1466-8238.2011.00652.x. DOI
de Frenne P, et al. Light accelerates plant responses to warming. Nat. Plants. 2015;1:15110. doi: 10.1038/nplants.2015.110. PubMed DOI
Baeten L, et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 2009;12:187–197. doi: 10.1111/j.1654-109X.2009.01013.x. DOI
Becker T, Spanka J, Schröder L, Leuschner C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 2017;20:304–313. doi: 10.1111/avsc.12282. DOI
van Calster H, et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Ecol. Manag. 2008;256:519–528. doi: 10.1016/j.foreco.2008.04.042. DOI
Luyssaert S, et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 2010;16:1429–1450. doi: 10.1111/j.1365-2486.2009.02056.x. DOI
Kirby KJ, et al. Five decades of ground flora changes in a temperate forest: the good, the bad and the ambiguous in biodiversity terms. Ecol. Manag. 2022;505:119896. doi: 10.1016/j.foreco.2021.119896. DOI
Hautier Y, Niklaus PA, Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science. 2009;324:636–638. doi: 10.1126/science.1169640. PubMed DOI
Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag.494, 119310 (2021).
Dormann CF, et al. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 2020;20:1–9. doi: 10.1186/s12898-020-00311-9. PubMed DOI PMC
Dirnböck T, et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Chang. Biol. 2014;20:429–440. doi: 10.1111/gcb.12440. PubMed DOI
Perring MP, et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 2018;242:1787–1799. doi: 10.1016/j.envpol.2018.07.089. PubMed DOI
Anderson TM, et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology. 2018;99:822–831. doi: 10.1002/ecy.2175. PubMed DOI
Gough L, Grace JB. Herbivore effects on plant species density at varying productivity levels. Ecology. 1998;79:1586–1594. doi: 10.1890/0012-9658(1998)079[1586:HEOPSD]2.0.CO;2. DOI
Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature611, 301–305 (2022). PubMed PMC
Knight TM, Dunn JL, Smith LA, Davis JA, Kalisz S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas. 2009;29:110–116. doi: 10.3375/043.029.0202. DOI
Beguin, J., Pothier, D. & Côté, S. D. Deer browsing and soil disturbance induce cascading effects on plant communities: a multilevel path analysis. Ecol. Appl.21, 439–451 (2011). PubMed
Gilliam FS, et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere. 2016;7:e01250. doi: 10.1002/ecs2.1250. DOI
de Frenne P, et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA. 2013;110:18561–18565. doi: 10.1073/pnas.1311190110. PubMed DOI PMC
Hedwall, P. O. et al. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl.29, e01874 (2019). PubMed
Perring MP, et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 2018;24:1722–1740. doi: 10.1111/gcb.14030. PubMed DOI
Boulanger V, et al. Decreasing deer browsing pressure influenced understory vegetation dynamics over 30 years. Ann. Sci. 2015;72:367–378. doi: 10.1007/s13595-014-0431-z. DOI
Bernes C, et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evid. 2018;7:1–32. doi: 10.1186/s13750-018-0125-3. DOI
Reimoser F. Steering the impacts of ungulates on temperate forests. J. Nat. Conserv. 2003;10:243–252. doi: 10.1078/1617-1381-00024. DOI
Vavra M, Parks CG, Wisdom MJ. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 2007;246:66–72. doi: 10.1016/j.foreco.2007.03.051. DOI
Depauw L, et al. Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J. Ecol. 2020;108:1411–1425. doi: 10.1111/1365-2745.13339. DOI
Chevaux, L. et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol. Appl.32, e01874 (2022). PubMed
Gordon IJ. Browsing and grazing ruminants: are they different beasts? Ecol. Manag. 2003;181:13–21. doi: 10.1016/S0378-1127(03)00124-5. DOI
Brasseur B, et al. What deep‐soil profiles can teach us on deep‐time pH dynamics after land use change? Land Degrad. Dev. 2018;29:2951–2961. doi: 10.1002/ldr.3065. DOI
Schmitz A, et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 2019;244:980–994. doi: 10.1016/j.envpol.2018.09.101. PubMed DOI
Dirnböck T, et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ. Res. Lett. 2018;13:125010. doi: 10.1088/1748-9326/aaf26b. DOI
Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).
Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. preprint. PeerJ Preprints5, e3304v1 (2017).
Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Res. 2013;2:191. doi: 10.12688/f1000research.2-191.v1. PubMed DOI PMC
Hédl R, Kopecký M, Komárek J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 2010;16:267–276. doi: 10.1111/j.1472-4642.2010.00637.x. DOI
Giménez-Anaya A, Herrero J, Rosell C, Couto S, García-Serrano A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands. 2008;28:197–203. doi: 10.1672/07-18.1. DOI
Barrios-Garcia MN, Ballari SA. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions. 2012;14:2283–2300. doi: 10.1007/s10530-012-0229-6. DOI
Andersen R, et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 2017;25:271–282. doi: 10.1111/rec.12415. DOI
Faurby S, et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology. 2018;99:2626. doi: 10.1002/ecy.2443. PubMed DOI
van den Berg LJL, et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 2016;208:890–897. doi: 10.1016/j.envpol.2015.09.017. PubMed DOI
McNaughton SJ, Oesterheld M, Frank DA, Williams KJ. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature. 1989;341:142–144. doi: 10.1038/341142a0. PubMed DOI
Koerner SE, et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2018;2:1925–1932. doi: 10.1038/s41559-018-0696-y. PubMed DOI
Fréjaville T, Garzón MB. The EuMedClim database: yearly climate data (1901-2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol. 2018;6:1–5. doi: 10.3389/fevo.2018.00031. DOI
Al‐Yaari A, et al. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Glob. Chang. Biol. 2020;26:6959–6973. doi: 10.1111/gcb.15345. PubMed DOI
Szabó P, Hédl R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 2011;25:680–687. doi: 10.1111/j.1523-1739.2011.01710.x. PubMed DOI
Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Spec. Feature Ecol. 1999;80:1150–1156.
Hillebrand H, et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 2018;55:169–184. doi: 10.1111/1365-2664.12959. DOI
Holz H, Segar J, Valdez J, Staude IR. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet. 2022;4:303–311. doi: 10.1002/ppp3.10251. DOI
Staude IR, et al. Directional turnover towards larger‐ranged plants over time and across habitats. Ecol. Lett. 2021;25:466–482. doi: 10.1111/ele.13937. PubMed DOI
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Verlag Wrich Goltze, 2001).
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenbergtype indicator values for the Czech flora. Preslia90, 83–103 (2018).
Bürkner P-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998;7:434–455.
Dushoff J, Kain MP, Bolker BM. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 2019;10:756–759. doi: 10.1111/2041-210X.13159. DOI
Bradshaw L, Waller DM. Impacts of white-tailed deer on regional patterns of forest tree recruitment. Ecol. Manag. 2016;375:1–11. doi: 10.1016/j.foreco.2016.05.019. DOI
McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).
Nuttle, T., Ristau, T. E. & Royo, A. A. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102, 221–228 (2013).