Directional turnover towards larger-ranged plants over time and across habitats

. 2022 Feb ; 25 (2) : 466-482. [epub] 20211205

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34866301

Grantová podpora
DFG FZT 118 Deutsche Forschungsgemeinschaft
Dirección General de Cambio Climático del Gobierno de Aragón
Ordesa y Monte Perdido National Park
Servicio de Medio Ambiente de Soria de la Junta de Castilla y León
NE/R016429/1 Natural Environment Research Council
Wissenschaftsförderung der Südtiroler Landesregierung
Tiroler Wissenschaftsfonds
RVO 67985939 Czech Academy of Sciences
22 PFE/2018 Ministry of Research and Innovation
PN2019-2022/19270201 Ministry of Research and Innovation
871128 Horizon 2020
757833 Horizon 2020
Austrian Academy of Sciences
Swiss Federal Office of Education and Science
Swiss Federal Office for the Environment
Swiss National Park
Dr. Joachim de Giacomi foundation
Carnegie-Caledonian PhD Scholarship
NE/L002558/1 NERC
Scientific Grant Agency
Dutch Research Council - Netherlands
European Research Council - International

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.

Al Borza Botanic Garden Babeș Bolyai University Cluj Napoca Romania

Bavarian State Institute of Forestry Freising Germany

Białowieża Geobotanical Station Faculty of Biology University of Warsaw Białowieża Poland

BMS Umweltplanung Osnabrück Germany

Botanical Garden of Medicinal Plants Department of Pharmaceutical Biology and Biotechnology Wrocław Medical University Wrocław Poland

Center for Systematic Biology Biodiversity and Bioresources 3B Faculty of Biology and Geology Babeș Bolyai University Cluj Napoca Romania

Centre for Geography and Environmental Science Exeter University Penryn Cornwall UK

CIBIO Universidade do Porto Vairão Portugal

Climate Change Extremes and Natural Hazards in Alpine Regions Research Center CERC Davos Dorf Switzerland

Département de biologie Université de Sherbrooke Sherbrooke Québec Canada

Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden

Department of Biology NTNU Trondheim Norway

Department of Botany and Plant Biology University of Geneva Chambésy Switzerland

Department of Botany Faculty of Biological Sciences University of Wrocław Wrocław Poland

Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czech Republic

Department of Botany University of Innsbruck Innsbruck Austria

Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parma Italy

Department of Earth and Environmental Sciences University of Pavia Pavia Italy

Department of Ecology Environment and Plant Sciences Stockholm University Stockholm Sweden

Department of Environmental Sciences Wageningen University Wageningen The Netherlands

Department of Forest Biodiversity University of Agriculture Kraków Poland

Department of Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

Department of Industrial Economics and Technology Management Norwegian University of Science and Technology Trondheim Norway

Department of Life and Environmental Sciences Bournemouth University Poole Dorset UK

Department of Life Sciences and Systems Biology University of Turin Turin Italy

Department of Plant Systematics Ecology and Theoretical Biology ELTE Eötvös Loránd University Budapest Hungary

Department of Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

Emil G Racoviță Institute Babeș Bolyai University Cluj Napoca Romania

Environment Agency Austria Vienna Austria

Faculty of Environment UJEP Ústí nad Labem Czech Republic

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Praha Czech Republic

Faculty of Forestry Technical University in Zvolen Zvolen Slovakia

Faculty of Forestry University of Sopron Sopron Hungary

Fondation J M Aubert Champex Lac Switzerland

Forest and Nature Lab Ghent University Gontrode Belgium

Foundation for Biodiversity Research Wrocław Poland

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

GLORIA Aragon Coordination Jolube Consultor Botánico y Editor Huesca Spain

GLORIA Coordination Department of Integrative Biology and Biodiversity Research at the University of Natural Resources and Life Sciences Vienna Vienna Austria

GLORIA Coordination Institute for Interdisciplinary Mountain Research at the Austrian Academy of Sciences Vienna Austria

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Institute of Biochemistry and Biology University of Potsdam Potsdam Germany

Institute of Biological Research NIRDBS Cluj Napoca Romania

Institute of Biology and Biotechnology University of Rzeszów Rzeszów Poland

Institute of Biology Martin Luther University Halle Wittenberg Halle Germany

Institute of Biology University of Pécs Pécs Hungary

Institute of Botany Czech Academy of Sciences Brno Czech Republic

Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic

Institute of Earth Surface Dynamics Faculty of Geosciences and Environment University of Lausanne Lausanne Switzerland

Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany

Institute of Ecology FB 2 University of Bremen Bremen Germany

Institute of Landscape Ecology Slovak Academy of Sciences Bratislava Slovakia

Instituto Pirenaico de Ecología IPE CSIC Jaca Huesca Spain

Leibniz Centre for Agricultural Landscape Research Muencheberg Germany

Leibniz Centre for Agricultural Landscape Research Müncheberg Germany

MTA DE Lendület Functional and Restoration Ecology Research Group Debrecen Egyetem Debrecen Hungary

Museum of Natural History University of Wrocław Wrocław Poland

National Forest Centre Zvolen Slovakia

Norwegian Institute of Bioeconomy Research Bergen Norway

PTE KPVK Institute for Regional Development Szekszárd Hungary

Research Institute for Nature and Forest Brussels Belgium

School of GeoSciences University of Edinburgh Edinburgh UK

Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden

Swiss National Park Zernez Switzerland

UK Centre for Ecology and Hydrology Penicuik Midlothian UK

UR Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne Amiens France

WSL Institute for Snow and Avalanche Research SLF Davos Switzerland

Zobrazit více v PubMed

Aarssen, L.W. & Taylor, D.R. (1992) Fecundity allocation in herbaceous plants. Oikos, 225-232.

Adler, P.B., Leiker, J. & Levine, J.M. (2009) Direct and indirect effects of climate change on a prairie plant community. PLoS One, 4, e6887.

Alexander, J.M., Diez, J.M. & Levine, J.M. (2015) Novel competitors shape species’ responses to climate change. Nature, 525, 515-518.

Barnes, R., Sahr, K., Evenden, G., Johnson, A. & Warmerdam, F. (2017) dggridR: discrete global grids for R. R package version 0.1, 12.

Bartelheimer, M. & Poschlod, P. (2016) Functional characterizations of Ellenberg indicator values-a review on ecophysiological determinants. Functional Ecology, 30, 506-516.

Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.

Baselga, A. & Orme, C.D.L. (2012) betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.

Benayas, J.M.R., Newton, A.C., Diaz, A. & Bullock, J.M. (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325, 1121-1124.

Bernes, C., Macura, B., Jonsson, B.G., Junninen, K., Müller, J., Sandström, J. et al. (2018) Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environmental Evidence, 7, 1-32.

Bernhardt-Römermann, M., Baeten, L., Craven, D., De Frenne, P., Hédl, R., Lenoir, J. et al. (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 21, 3726-3737.

Bertness, M.D. & Callaway, R. (1994) Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.

Billings, W.D. & Mooney, H.A. (1968) The ecology of arctic and alpine plants. Biological Reviews, 43, 481-529.

Blowes, S.A., Supp, S.R., Antão, L.H., Bates, A., Bruelheide, H., Chase, J.M. et al. (2019) The geography of biodiversity change in marine and terrestrial assemblages. Science, 366, 339-345.

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M. et al. (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.

Borer, E.T., Seabloom, E.W., Gruner, D.S., Harpole, W.S., Hillebrand, H., Lind, E.M. et al. (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 517-520.

Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.

Bürkner, P.-C. (2017) brms: an R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1-28.

Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R. et al. (2002) Positive interactions among alpine plants increase with stress. Nature, 417, 844-848.

Chamberlain, S. (2020) scrubr: clean biological occurrence records. R Packag. version 0.3.2.

Chang, C.C. & Turner, B.L. (2019) Ecological succession in a changing world. Journal of Ecology, 107(2), 503-509.

Clements, F.E. (1916) Plant succession: an analysis of the development of vegetation. Washington: Carnegie Institution of Washington.

Cronk, Q. (2016) Plant extinctions take time. Science, 353, 446-447.

Daskalova, G.N., Myers-Smith, I.H., Bjorkman, A.D., Blowes, S.A., Supp, S.R., Magurran, A.E. et al. (2020) Landscape-scale forest loss as a catalyst of population and biodiversity change. Science, 368, 1341-1347.

De Frenne, P., Rodriguez-Sanchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellend, M. et al. (2013) Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110, 18561-18565.

Diekmann, M. (2003) Species indicator values as an important tool in applied plant ecology-a review. Basic and Applied Ecology, 4, 493-506.

Diekmann, M., Andres, C., Becker, T., Bennie, J., Blüml, V., Bullock, J.M. et al. (2019) Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe. Journal of Vegetation Science, 30, 187-202.

Diekmann, M., Jandt, U., Alard, D., Bleeker, A., Corcket, E., Gowing, D.J.G. et al. (2014) Long-term changes in calcareous grassland vegetation in North-western Germany-no decline in species richness, but a shift in species composition. Biological Conservation, 172, 170-179.

Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. et al. (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296-299.

Dornelas, M., Gotelli, N.J., Shimadzu, H., Moyes, F., Magurran, A.E. & McGill, B.J. (2019) A balance of winners and losers in the Anthropocene. Ecology Letters, 22, 847-854.

Dushoff, J., Kain, M.P. & Bolker, B.M. (2019) I can see clearly now: reinterpreting statistical significance. Methods in Ecology and Evolution, 10, 756-759.

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Göttingen, Germany: Goltze.

Estrada, A., Meireles, C., Morales-Castilla, I., Poschlod, P., Vieites, D., Araújo, M.B. et al. (2015) Species’ intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography, 24, 849-858.

Fischer, M.A., Oswald, K. & Adler, W. (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol. 3., verbesserte Auflage. Linz: Land Oberösterreich, Biologiezentrum der Oberösterreichischen Landesmuseen. ISBN 978-3-85474-187-9, S. 897.

Fristoe, T.S., Chytrý, M., Dawson, W., Essl, F., Heleno, R., Kreft, H. et al. (2021) Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 118(22), e2021173118.

Futschik, A., Winkler, M., Steinbauer, K., Lamprecht, A., Rumpf, S.B., Barančok, P. et al. (2020) Disentangling observer error and climate change effects in long-term monitoring of alpine plant species composition and cover. Journal of Vegetation Science, 31, 14-25.

Gaston, K.J. & Blackburn, T.M. (1996) Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. Journal of Animal Ecology, 701-714.

Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37, 39-59.

Gaston, K.J. & Fuller, R.A. (2009) The sizes of species’ geographic ranges. Journal of Applied Ecology, 46, 1-9.

gbif.org; 28 May (2020). GBIF occurrence download. https://doi.org/10.15468/dl.cxdh9m

Gonzalez, A., Cardinale, B.J., Allington, G.R.H., Byrnes, J., Arthur Endsley, K., Brown, D.G. et al. (2016) Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology, 97, 1949-1960.

Graae, B.J., Vandvik, V., Armbruster, W.S., Eiserhardt, W.L., Svenning, J.-C., Hylander, K. et al. (2018) Stay or go-how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 30, 41-50.

Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. In: Gilpin, M. & Hanski, I. (Eds.) Metapopulation dynamics: empirical and theoretical investigations. London: Academic Press, pp. 17-38.

Harper, J.L., Lovell, P.H. & Moore, K.G. (1970) The shapes and sizes of seeds. Annual Review of Ecology and Systematics, 1, 327-356.

Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T. et al. (2016) Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93-96.

Hautier, Y., Niklaus, P.A. & Hector, A. (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.

Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Lughadha, E.N. & Vorontsova, M.S. (2019) Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology & Evolution, 3, 1043-1047.

Isbell, F., Tilman, D., Reich, P.B. & Clark, A.T. (2019) Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nature Ecology & Evolution, 3, 1533-1538.

Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. (2017) Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nature Communications, 8, 1-8.

Kalusová, V., Chytrý, M., van Kleunen, M., Mucina, L., Dawson, W. et al. (2017) Naturalization of European plants on other continents: the role of donor habitats. Proceedings of the National Academy of Sciences of the United States of America, 114, 13756-13761.

Kambach, S., Lenoir, J., Decocq, G., Welk, E., Seidler, G., Dullinger, S. et al. (2019) Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 42, 467-477.

Kleijn, D., Bekker, R.M., Bobbink, R., De Graaf, M.C.C. & Roelofs, J.G.M. (2008) In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. Journal of Applied Ecology, 45, 680-687.

Köckemann, B., Buschmann, H. & Leuschner, C. (2009) The relationships between abundance, range size and niche breadth in Central European tree species. Journal of Biogeography, 36, 854-864.

Kopecký, M., Hédl, R. & Szabó, P. (2013) Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 50, 79-87.

Kopecký, M. & Macek, M. (2015) Vegetation resurvey is robust to plot location uncertainty. Diversity and Distributions, 21, 322-330.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F. et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601-613.

Levine, J.M., McEachern, A.K. & Cowan, C. (2010) Do competitors modulate rare plant response to precipitation change? Ecology, 91, 130-140.

Li, D., Olden, J.D., Lockwood, J.L., Record, S., McKinney, M.L. & Baiser, B. (2020) Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B, 287, 20200777.

Lichter, J. (1998) Primary succession and forest development oncoastal Lake Michigan sand dunes. Ecological Monographs, 68, 487-510.

McKinney, M.L. & Lockwood, J.L. (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14, 450-453.

Meyer, C., Weigelt, P. & Kreft, H. (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19, 992-1006.

Moore, T.E., Bagchi, R., Aiello-Lammens, M.E. & Schlichting, C.D. (2018) Spatial autocorrelation inflates niche breadth-range size relationships. Global Ecology and Biogeography, 27, 1426-1436.

Murphy, G.E.P. & Romanuk, T.N. (2014) A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91-103.

Newbold, T., Hudson, L.N., Contu, S., Hill, S.L.L., Beck, J., Liu, Y. et al. (2018) Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biology, 16(12), e2006841.

Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A. et al. (2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.

Nic Lughadha, E., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M., Moat, J. et al. (2020) Extinction risk and threats to plants and fungi. Plants, People, Planet, 2, 389-408.

Odum, E.P. (1969) The strategy of ecosystem development. Science, 164, 262-270.

O'Neill, B.C., Tebaldi, C., van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G. et al. (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461-3482.

Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B. et al. (2012) Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079), 353-355.

Pauli, H., Gottfried, M., Lamprecht, A., Niessner, S., Rumpf, S.B. & Winkler, M. et al. (2015). The GLORIA field manual-standard Multi-Summit approach, supplementary methods and extra approaches. Vienna: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences. ISBN: 978-92-79-45694-7.

Peeters, A., Beaufoy, G., Canals, R.M., De Vliegher, A., Huyghe, C., Isselstein, J. et al. (2014) Grassland term definitions and classifications adapted to the diversity of European grassland-based systems. In: 25th EGF General Meeting on “EGF at 50: The Future of European Grasslands, 743-750.

Peterken, G.F. (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge: Cambridge University Press.

Phillips, J. (1934) Succession, development, the climax, and the complex organism: an analysis of concepts. Part I. The Journal of Ecology, 22, 554-571.

Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N. et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.

Rabinowitz, D. (1986) Seven forms of rarity and their frequency in the flora of the British Isles. In: Soulé, M.E. (Ed.) Conservation biology: the science of scarcity and diversity. Sunderland: Sinauer Associates, pp. 182-204.

Rumpf, S.B., Hülber, K., Klonner, G., Moser, D., Schütz, M., Wessely, J. et al. (2018) Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 115, 1848-1853.

Salazar, A., Rousk, K., Jónsdóttir, I.S., Bellenger, J.-P. & Andrésson, Ó.S. (2020) Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology, 101, e02938.

Sax, D.F. & Gaines, S.D. (2003) Species diversity: from global decreases to local increases. Trends in Ecology & Evolution, 18, 561-566.

Scherrer, D. & Körner, C. (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38, 406-416.

Sonkoly, J., Deák, B., Valkó, O., Molnár V., A., Tóthmérész, B. & Török, P. (2017) Do large-seeded herbs have a small range size? The seed mass-distribution range trade-off hypothesis. Ecology and Evolution, 7, 11204-11212.

Sporbert, M., Keil, P., Seidler, G., Bruelheide, H., Jandt, U., Aćić, S. et al. (2020) Testing macroecological abundance patterns: the relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 47, 2210-2222.

Staude, I.R., Waller, D.M., Bernhardt-Römermann, M., Bjorkman, A.D., Brunet, J., De Frenne, P. et al. (2020) Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nature Ecology & Evolution, 4, 802-808.

Steinbauer, M.J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H. et al. (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231-234.

Stevens, C.J., Dise, N.B., Mountford, J.O. & Gowing, D.J. (2004) Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.

Suttle, K.B., Thomsen, M.A. & Power, M.E. (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.

Thompson, K., Hodgson, J.G. & Gaston, K.J. (1998) Abundance-range size relationships in the herbaceous flora of central England. Journal of Ecology, 86, 439-448.

Tylianakis, J.M., Didham, R.K., Bascompte, J. & Wardle, D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363.

Vangansbeke, P., Máliš, F., Hédl, R., Chudomelová, M., Vild, O., Wulf, M. et al. (2021) ClimPlant: realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 30, 1183-1190.

Vela Díaz, D.M., Blundo, C., Cayola, L., Fuentes, A.F., Malizia, L.R. & Myers, J.A. (2020) Untangling the importance of niche breadth and niche position as drivers of tree species abundance and occupancy across biogeographic regions. Global Ecology and Biogeography, 29, 1542-1553.

Vellend, M. (2017) The biodiversity conservation paradox. American Scientist, 105, 94-101.

Vellend, M., Baeten, L., Myers-Smith, I.H., Elmendorf, S.C., Beausejour, R., Brown, C.D. et al. (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 110, 19456-19459.

Vellend, M., Dornelas, M., Baeten, L., Beauséjour, R., Brown, C.D., De Frenne, P. et al. (2017) Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 98, 583-590.

Verheyen, K., Bažány, M., Chećko, E., Chudomelová, M., Closset-Kopp, D., Czortek, P. et al. (2018) Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 29, 812-823.

Verheyen, K., De Frenne, P., Baeten, L., Waller, D.M., Hédl, R., Perring, M.P. et al. (2016) Combining biodiversity resurveys across regions to advance global change research. BioScience, 67, 73-83.

Walker, L.R. & Wardle, D.A. (2014) Plant succession as an integrator of contrasting ecological time scales. Trends in Ecology & Evolution, 29, 504-510.

Waller, D.M. (1988) Plant morphology and reproduction. Plant Reproductive Ecology: Patterns and Strategies, 203-227.

Wright, D.H. (1991) Correlations between incidence and abundance are expected by chance. Journal of Biogeography, 18(4), 463-466.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...