Elevated compositional change in plant assemblages linked to invasion

. 2023 May 10 ; 290 (1998) : 20222450. [epub] 20230510

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37161334

Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.

Zobrazit více v PubMed

Blowes SA, et al. . 2019. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339-345. (10.1126/science.aaw1620) PubMed DOI

Balvanera P, Pfaff A, Viña A, Frapolli EG, Merino L, Minang PA, Nagabata N, Hussein S, Sidorovich A. 2019. Status and trends: drivers of change. In Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondízio ES, Settele J, Díaz S, Ngo HT), pp. 49-200. Bonn, Germany: IPBES Secretariat.

Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296-299. (10.1126/science.1248484) PubMed DOI

Vellend M, Baeten L, Becker-scarpitta A, Mccune JL, Messier J, Myers-smith IH, Sax DF. 2016. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant. Biol. 68, 563-586. (10.1146/annurev-arplant-042916-040949) PubMed DOI

Magurran AE, Deacon AE, Moyes F, Shimadzu H, Dornelas M, Phillip DAT. 2018. Divergent biodiversity change within ecosystems. Proc. Natl Acad. Sci. USA 110, 1843-1847. (10.1073/pnas.1712594115) PubMed DOI PMC

Díaz S, et al. . 2019. IPBES: summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn, Germany: IPBES secretariat.

Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Glob. Chang. Biol. 18, 1725-1737. (10.1111/j.1365-2486.2011.02636.x) DOI

Vilà M, et al. . 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702-708. (10.1111/j.1461-0248.2011.01628.x) PubMed DOI

Hejda M, Pyšek P, Jarošík V. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393-403. (10.1111/j.1365-2745.2009.01480.x) DOI

Jones SA, DeKeyser ES, Dixon C, Kobiela B. 2023. Invasive species change plant community composition of preserved Prairie Pothole wetlands. Plants 12, 1281. (10.3390/plants12061281) PubMed DOI PMC

Kortz AR, Magurran AE. 2019. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133. (10.1098/rsbl.2019.0133) PubMed DOI PMC

Capinha C, Essl F, Seebens H, Moser D, Pereira HM. 2015. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248-1251. (10.1126/science.aaa8913) PubMed DOI

Blackburn TM, et al. . 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850. (10.1371/journal.pbio.1001850) PubMed DOI PMC

Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263-282. (10.1890/13-0183.1) DOI

Simberloff D, et al. . 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28, 58-66. (10.1016/j.tree.2012.07.013) PubMed DOI

Yurkonis KA, Meiners SJ, Wachholder BE. 2005. Invasion impacts diversity through altered community dynamics. J. Ecol. 93, 1053-1061. (10.1111/j.1365-2745.2005.01029.x) DOI

Xu H, Liu Q, Wang S, Yang G, Xue S. 2022. A global meta-analysis of the impacts of exotic plant species invasion on plant diversity and soil properties. Sci. Total Environ. 810, 152286. (10.1016/j.scitotenv.2021.152286) PubMed DOI

Cameron EK, Vilà M, Cabeza M. 2016. Global meta-analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Glob. Ecol. Biogeogr. 25, 596-606. (10.1111/geb.12436) DOI

Gaertner M, Den Breeyen A, Hui C, Richardson DM. 2009. Impacts of alien plant invasions on species richness in mediterranean-type ecosystems: a meta-analysis. Prog. Phys. Geogr. 33, 319-338. (10.1177/0309133309341607) DOI

Nunes AL, Fill JM, Davies SJ, Louw M, Rebelo AD, Thorp CJ, Vimercati G, Measey J. 2019. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B 286, 20182528. (10.1098/rspb.2018.2528) PubMed DOI PMC

Arroyo-Correa B, Burkle LA, Emer C. 2020. Alien plants and flower visitors disrupt the seasonal dynamics of mutualistic networks. J. Ecol. 108, 1475-1486. (10.1111/1365-2745.13332) DOI

Bellard C, Cassey P, Blackburn TM. 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623. (10.1098/rsbl.2015.0623) PubMed DOI PMC

Vitule JRS, Freire CA, Simberloff D. 2009. Introduction of non-native freshwater fish can certainly be bad. Fish Fish. 10, 98-108. (10.1111/j.1467-2979.2008.00312.x) DOI

Dueñas MA, Hemming DJ, Roberts A, Diaz-Soltero H. 2021. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. 26, e01476. (10.1016/j.gecco.2021.e01476) DOI

Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR. 2016. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11 261-11 265. (10.1073/pnas.1602480113) PubMed DOI PMC

Pyšek P, et al. . 2020. Scientists' warning on invasive alien species. Biol. Rev. 95, 1511-1534. (10.1111/brv.12627) PubMed DOI PMC

McGlinn DJ, et al. . 2019. Measurement of biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 10, 258-269. (10.1111/2041-210X.13102) DOI

Kortz AR, Magurran AE. 2021. Complex community responses underpin biodiversity change following invasion. Biol. Invasions 23, 3063-3076. (10.1007/s10530-021-02559-8) DOI

MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton, NJ: Princeton University Press.

Matthews TJ, Sadler J, Carvalho R, Nunes R, Borges PAV. 2019. Differential temporal beta-diversity patterns of native and non-native arthropod species in a fragmented native forest landscape. Ecography (Cop.) 42, 45-54. (10.1111/ecog.03812) DOI

Petsch DK, dos Bertoncin APS, Ortega JCG, Thomaz SM. 2022. Non-native species drive biotic homogenization, but it depends on the realm, beta diversity facet and study design: a meta-analytic systematic review. Oikos 2022, e08768. (10.1111/oik.08768) DOI

Nobis A, Żmihorski M, Kotowska D. 2016. Linking the diversity of native flora to land cover heterogeneity and plant invasions in a river valley. Biol. Conserv. 203, 17-24. (10.1016/j.biocon.2016.08.032) DOI

Winter M, Kühn I, La Sorte FA, Schweiger O, Nentwig W, Klotz S. 2010. The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Glob. Ecol. Biogeogr. 19, 332-342. (10.1111/j.1466-8238.2010.00520.x) DOI

Rahel FJ. 2002. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 33, 291-315. (10.1146/annurev.ecolsys.33.010802.150429) DOI

Dornelas M, et al. . 2018. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760-786. (10.1111/geb.12729) PubMed DOI PMC

van Kleunen M, et al. . 2019. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, 1-2. (10.1002/ecy.2542) PubMed DOI

Avolio ML, et al. . 2021. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892-1904. (10.1111/ele.13824) PubMed DOI

Magurran AE, Dornelas M, Moyes F, Henderson PA. 2019. Temporal β diversity — A macroecological perspective. Glob. Ecol. Biogr. 28, 1949-1960. (10.1111/geb.13026) DOI

Baselga A, Orme CDL. 2012. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808-812. (10.1111/j.2041-210X.2012.00224.x) DOI

Baselga A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223-1232. (10.1111/j.1466-8238.2011.00756.x) DOI

Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506-6511. (10.1073/pnas.1711842115) PubMed DOI PMC

Pereira HM, David Cooper H. 2006. Towards the global monitoring of biodiversity change. Trends Ecol. Evol. 21, 123-129. (10.1016/j.tree.2005.10.015) PubMed DOI

Nic Lughadha E, et al. 2005. Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Phil. Trans. R. Soc. B 360, 359-372. (10.1098/rstb.2004.1596) PubMed DOI PMC

BioTIME. 2022. BioTIME—global database of assemblage time series for quantifying and understanding biodiversity change. See https://biotime.st-andrews.ac.uk/ (accessed on 29 June 2022).

The Plant List. 2013. The plant list: a working list of all plant species. See http://www.theplantlist.org/ (accessed on 3 January 2020).

Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. 2012. Taxonstand: an r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078-1083. (10.1111/j.2041-210X.2012.00232.x) DOI

Cayuela L, Macarro I, Stein A, Oksanen J. 2019. Taxonstand: taxonomic standardization of plant species names. Version 2.4. See https://CRAN.R-project.org/package=Taxonstand.

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45-67. (10.1890/13-0133.1) DOI

Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M, Henriques-Silva R. 2021. betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.2. See https://CRAN.R-project.org/package=betapart.

R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.

Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. (10.1093/bioinformatics/bty633) PubMed DOI

Avolio ML, et al. . 2019. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere 10, e02281. (10.1002/ecs2.2881) DOI

Hallett L, et al. . 2020. codyn: community dynamics metrics. R package version 2.0.5. See https://github.com/NCEAS/codyn.

Kassambara A. 2020. Package ‘ggpubr’: ‘ggplot2’ based publication ready plots. Version 0.2.5. See https://CRAN.R-project.org/package=ggpubr.

Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PZ, Fidelis A. 2018. Impact of invasive grasses on Cerrado under natural regeneration. Biol. Invasions 20, 3621-3629. (10.1007/s10530-018-1800-6) DOI

Damasceno G, Fidelis A. 2020. Abundance of invasive grasses is dependent on fire regime and climatic conditions in tropical savannas. J. Environ. Manage. 271, 111016. (10.1016/j.jenvman.2020.111016) PubMed DOI

Magurran AE, Henderson PA. 2010. Temporal turnover and the maintenance of diversity in ecological assemblages. Phil. Trans. R. Soc. B 365, 3611-3620. (10.1098/RSTB.2010.0285) PubMed DOI PMC

Staude IR, et al. . 2022. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466-482. (10.1111/ele.13937) PubMed DOI

Antão LH, Bates AE, Blowes SA, Waldock C, Supp SR, Magurran AE, Dornelas M, Schipper AM. 2020. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927-933. (10.1038/s41559-020-1185-7) PubMed DOI

Hillebrand H, et al. . 2018. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169-184. (10.1111/1365-2664.12959) DOI

Kortz AR, Moyes F, Pivello VR, Pyšek P, Dornelas M, Visconti P, Magurran AE. 2023. Elevated compositional change in plant assemblages linked to invasion. Figshare. (10.6084/m9.figshare.c.6626097) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Elevated compositional change in plant assemblages linked to invasion

. 2023 May 10 ; 290 (1998) : 20222450. [epub] 20230510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...