Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer's Disease: Toward Multi-Interaction Biomolecular Processes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA19-02739S
Grantová Agentura České Republiky - International
16-27611A
Agentura Pro Zdravotnický Výzkum České Republiky - International
PubMed
32825572
PubMed Central
PMC7563123
DOI
10.3390/biom10091214
PII: biom10091214
Knihovny.cz E-zdroje
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10), amyloid beta (Aβ), biomolecular interaction analysis, cyclophilin D (cypD), kinetic parameters, surface plasmon resonance (SPR),
- MeSH
- 17-hydroxysteroidní dehydrogenasy chemie metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- biosenzitivní techniky MeSH
- lidé MeSH
- mitochondriální proteiny chemie metabolismus MeSH
- peptidylprolylisomerasa F chemie metabolismus MeSH
- povrchová plasmonová rezonance MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- amyloidní beta-protein MeSH
- mitochondriální proteiny MeSH
- peptidylprolylisomerasa F MeSH
Progressive mitochondrial dysfunction due to the accumulation of amyloid beta (Aβ) peptide within the mitochondrial matrix represents one of the key characteristics of Alzheimer's disease (AD) and appears already in its early stages. Inside the mitochondria, Aβ interacts with a number of biomolecules, including cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), and affects their physiological functions. However, despite intensive ongoing research, the exact mechanisms through which Aβ impairs mitochondrial functions remain to be explained. In this work, we studied the interactions of Aβ with cypD and 17β-HSD10 in vitro using the surface plasmon resonance (SPR) method and determined the kinetic parameters (association and dissociation rates) of these interactions. This is the first work which determines all these parameters under the same conditions, thus, enabling direct comparison of relative affinities of Aβ to its mitochondrial binding partners. Moreover, we used the determined characteristics of the individual interactions to simulate the concurrent interactions of Aβ with cypD and 17β-HSD10 in different model situations associated with the progression of AD. This study not only advances the understanding of Aβ-induced processes in mitochondria during AD, but it also provides a new perspective on research into complex multi-interaction biomolecular processes in general.
Zobrazit více v PubMed
Gulisano W., Maugeri D., Baltrons M.A., Fa M., Amato A., Palmeri A., D’Adamio L., Grassi C., Devanand D.P., Honig L.S., et al. Role of Amyloid-beta and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J. Alzheimer’s Dis. JAD. 2018;64:S611–S631. doi: 10.3233/JAD-179935. PubMed DOI PMC
Reddy P.H., Tripathi R., Troung Q., Tirumala K., Reddy T.P., Anekonda V., Shirendeb U.P., Calkins M.J., Reddy A.P., Mao P., et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012;1822:639–649. doi: 10.1016/j.bbadis.2011.10.011. PubMed DOI PMC
Du H., Guo L., Yan S.S. Synaptic Mitochondrial Pathology in Alzheimer’s Disease. Antioxid. Redox Signal. 2012;16:1467–1475. doi: 10.1089/ars.2011.4277. PubMed DOI PMC
Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2014;1842:1219–1231. doi: 10.1016/j.bbadis.2013.09.010. PubMed DOI PMC
Manczak M., Anekonda T.S., Henson E., Park B.S., Quinn J., Reddy P.H. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 2006;15:1437–1449. doi: 10.1093/hmg/ddl066. PubMed DOI
Suzuki N., Cheung T., Cai X., Odaka A., Otvos L., Eckman C., Golde T., Younkin S. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264:1336–1340. doi: 10.1126/science.8191290. PubMed DOI
Pearson H.A., Peers C. Physiological roles for amyloid β peptides. J. Physiol. 2006;575:5–10. doi: 10.1113/jphysiol.2006.111203. PubMed DOI PMC
Murphy M.P., LeVine H., 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimer’s Dis. JAD. 2010;19:311–323. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Wang Y.-J., Zhou H.-D., Zhou X.-F. Clearance of amyloid-beta in Alzheimer’s disease: Progress, problems and perspectives. Drug Discov. Today. 2006;11:931–938. doi: 10.1016/j.drudis.2006.08.004. PubMed DOI
Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009;218:286–292. doi: 10.1016/j.expneurol.2009.03.042. PubMed DOI PMC
Crouch P.J., Harding S.-M.E., White A.R., Camakaris J., Bush A.I., Masters C.L. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2008;40:181–198. doi: 10.1016/j.biocel.2007.07.013. PubMed DOI
Lührs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Döbeli H., Schubert D., Riek R. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Garai K., Frieden C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proc. Natl. Acad. Sci. USA. 2013;110:3321–3326. doi: 10.1073/pnas.1222478110. PubMed DOI PMC
Yan Y., Wang C. Aβ42 is More Rigid than Aβ40 at the C Terminus: Implications for Aβ Aggregation and Toxicity. J. Mol. Biol. 2006;364:853–862. doi: 10.1016/j.jmb.2006.09.046. PubMed DOI
Hansson Petersen C.A., Alikhani N., Behbahani H., Wiehager B., Pavlov P.F., Alafuzoff I., Leinonen V., Ito A., Winblad B., Glaser E., et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 2008;105:13145–13150. doi: 10.1073/pnas.0806192105. PubMed DOI PMC
Benek O., Aitken L., Hroch L., Kuca K., Gunn-Moore F., Musilek K. A Direct Interaction between Mitochondrial Proteins and Amyloid-beta Peptide and its Significance for the Progression and Treatment of Alzheimer’s Disease. Curr. Med. Chem. 2015;22:1056–1085. doi: 10.2174/0929867322666150114163051. PubMed DOI
Muirhead K.E., Borger E., Aitken L., Conway S.J., Gunn-Moore F.J. The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. Biochem. J. 2010;426:255–270. doi: 10.1042/BJ20091941. PubMed DOI
Pagani L., Eckert A. Amyloid-Beta interaction with mitochondria. Int. J. Alzheimer’s Dis. 2011;2011 doi: 10.4061/2011/925050. PubMed DOI PMC
Readnower R.D., Sauerbeck A.D., Sullivan P.G. Mitochondria, Amyloid β, and Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2011;2011 doi: 10.4061/2011/104545. PubMed DOI PMC
Yan S.D., Stern D.M. Mitochondrial dysfunction and Alzheimer’s disease: Role of amyloid-β peptide alcohol dehydrogenase (ABAD) Int. J. Exp. Pathol. 2005;86:161–171. doi: 10.1111/j.0959-9673.2005.00427.x. PubMed DOI PMC
Singh P., Suman S., Chandna S., Das T.K. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer’s disease. Bioinformation. 2009;3:440–445. doi: 10.6026/97320630003440. PubMed DOI PMC
Berridge M.J. Calcium hypothesis of Alzheimer’s disease. Pflügers Arch. Eur. J. Physiol. 2010;459:441–449. doi: 10.1007/s00424-009-0736-1. PubMed DOI
Du H., Yan S.S. Mitochondrial permeability transition pore in Alzheimer’s disease: Cyclophilin D and amyloid beta. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC
Du Yan S., Fu J., Soto C., Chen X., Zhu H., Al-Mohanna F., Collison K., Zhu A., Stern E., Saido T., et al. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature. 1997;389:689–695. doi: 10.1038/39522. PubMed DOI
Du Yan S., Shi Y., Zhu A., Fu J., Zhu H., Zhu Y., Gibson L., Stern E., Collison K., Al-Mohanna F., et al. Role of ERAB/l-3-Hydroxyacyl-coenzyme A Dehydrogenase Type II Activity in Aβ-induced Cytotoxicity. J. Biol. Chem. 1999;274:2145–2156. doi: 10.1074/jbc.274.4.2145. PubMed DOI
Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. ABAD Directly Links Aß to Mitochondrial Toxicity in Alzheimer’s Disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Du H., Guo L., Fang F., Chen D., Sosunov A.A., McKhann G.M., Yan Y., Wang C., Zhang H., Molkentin J.D., et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 2008;14:1097–1105. doi: 10.1038/nm.1868. PubMed DOI PMC
Hemmerová E., Špringer T., Krištofiková Z., Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer’s disease. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-53157-7. PubMed DOI PMC
Yan Y., Liu Y., Sorci M., Belfort G., Lustbader J.W., Yan S.S., Wang C. Surface Plasmon Resonance and Nuclear Magnetic Resonance Studies of ABAD−Aβ Interaction. Biochemistry. 2007;46:1724–1731. doi: 10.1021/bi061314n. PubMed DOI
Aitken L., Quinn S.D., Perez-Gonzalez D.C., Samuel I.D.W., Penedo-Esteiro J.C., Gunn-Moore F.J. Morphology-specific inhibition of β-amyloid aggregates by 17β-hydroxysteroid dehydrogenase type 10. ChemBioChem. 2016;17:1029–1037. doi: 10.1002/cbic.201600081. PubMed DOI
Špringer T., Piliarik M., Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuators B Chem. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI
Špringer T., Chadtová Song X., Ermini M.L., Lamačová J., Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. doi: 10.1007/s00216-017-0355-1. PubMed DOI
Hou L., Shao H., Zhang Y., Li H., Menon N.K., Neuhaus E.B., Brewer J.M., Byeon I.-J.L., Ray D.G., Vitek M.P., et al. Solution NMR Studies of the Aβ(1−40) and Aβ(1−42) Peptides Establish that the Met35 Oxidation State Affects the Mechanism of Amyloid Formation. J. Am. Chem. Soc. 2004;126:1992–2005. doi: 10.1021/ja036813f. PubMed DOI
Broersen K., Jonckheere W., Rozenski J., Vandersteen A., Pauwels K., Pastore A., Rousseau F., Schymkowitz J. A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng. Des. Sel. 2011;24:743–750. doi: 10.1093/protein/gzr020. PubMed DOI
Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1–42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI
Bruggink K.A., Muller M., Kuiperij H.B., Verbeek M.M. Methods for analysis of amyloid-beta aggregates. J. Alzheimer’s Dis. JAD. 2012;28:735–758. doi: 10.3233/JAD-2011-111421. PubMed DOI
Aguilar M.-I., Small D.H. Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in alzheimer’s disease research. Neurotox. Res. 2005;7:17–27. doi: 10.1007/BF03033773. PubMed DOI
Kaasik A., Safiulina D., Zharkovsky A., Veksler V. Regulation of mitochondrial matrix volume. Am. J. Physiol. Cell Physiol. 2007;292:C157–C163. doi: 10.1152/ajpcell.00272.2006. PubMed DOI
Laskowski M., Augustynek B., Kulawiak B., Koprowski P., Bednarczyk P., Jarmuszkiewicz W., Szewczyk A. What do we not know about mitochondrial potassium channels? Biochim. Biophys. Acta (BBA) Bioenerg. 2016;1857:1247–1257. doi: 10.1016/j.bbabio.2016.03.007. PubMed DOI
Bradshaw P.C., Pfeiffer D.R. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. BMC Biochem. 2006;7:1–12. doi: 10.1186/1471-2091-7-4. PubMed DOI PMC
Gout E., Rebeille F., Douce R., Bligny R. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. USA. 2014;111:E4560–E4567. doi: 10.1073/pnas.1406251111. PubMed DOI PMC
van der Anton Merwe P., Neil Barclay A. Transient intercellular adhesion: The importance of weak protein-protein interactions. Trends Biochem. Sci. 1994;19:354–358. doi: 10.1016/0968-0004(94)90109-0. PubMed DOI
Krištofiková Z., Špringer T., Gedeonová E., Hofmannová A., Říčný J., Hromadková L., Vyhnálek M., Laczo J., Nikolai T., Hort J., et al. Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer’s Disease. Neurochem. Res. 2020 doi: 10.1007/s11064-020-02970-y. PubMed DOI PMC
Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study