Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM058843
NIGMS NIH HHS - United States
R01 GM084065
NIGMS NIH HHS - United States
PubMed
34244755
PubMed Central
PMC8373054
DOI
10.1093/nar/gkab567
PII: 6318497
Knihovny.cz E-zdroje
- MeSH
- antikodon genetika MeSH
- buněčné jádro genetika ultrastruktura MeSH
- cytoplazma genetika ultrastruktura MeSH
- guanosin genetika MeSH
- kodon genetika MeSH
- konformace nukleové kyseliny * MeSH
- mitochondrie genetika MeSH
- nukleosid Q genetika MeSH
- posttranskripční úpravy RNA genetika MeSH
- proteosyntéza genetika MeSH
- RNA transferová genetika ultrastruktura MeSH
- Trypanosoma brucei brucei genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antikodon MeSH
- guanosin MeSH
- kodon MeSH
- nukleosid Q MeSH
- RNA transferová MeSH
Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.
Department of Microbiology and The Center for RNA Biology The Ohio State University Columbus OH USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Grosjean H., Sprinzl M., Steinberg S.. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995; 77:139–141. PubMed
Phizicky E.M., Alfonzo J.D.. Do all modifications benefit all tRNAs. FEBS Lett. 2010; 584:265–271. PubMed PMC
Vinayak M., Pathak C.. Queuosine modification of tRNA: its divergent role in cellular machinery. Biosci. Rep. 2010; 30:135–148. PubMed
Curnow A.W., Garcia G.A.. tRNA-guanine transglycosylase from Escherichia coli. J. Biol. Chem. 1995; 270:17264–17267. PubMed
Gregson J.M., Crain P.F., Edmonds C.G., Gupta R., Hashizume T., Phillipson D.W., Mccloskey J.A.. Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4, 7-dihydro-4-oxo-7-ß-D-ribofuranosyl-1H-pyrrolo[2, 3-d]pyrimidine-5-carboximidamide (Archaeosine)). J. Biol. Chem. 1993; 268:10076–10086. PubMed
Iwata-Reuyl D.Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Bioorg. Chem. 2003; 31:24–43. PubMed
Zallot R., Brochier-Armanet C., Gaston K.W., Forouhar F., Limbach P.A., Hunt J.F., de Crécy-Lagard V.. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family. ACS Chem. Biol. 2014; 9:1812–1825. PubMed PMC
Chen Y.C., Kelly V.P., Stachura S.V, Garcia G.A.. Characterization of the human tRNA-guanine transglycosylase: Confirmation of the heterodimeric subunit structure. RNA. 2010; 16:958–968. PubMed PMC
Morris R.C., Brown K.G., Elliott M.S.. The effect of queuosine on tRNA structure and function. J. Biomol. Struct. Dyn. 1999; 16:757–774. PubMed
Meier F., Suter B., Grosjean H., Keith G., Kubli E.. Queuosine modification of the wobble base in tRNA-His influences ‘in vivo’ decoding properties. EMBO J. 1985; 4:823–827. PubMed PMC
Zaborske J.M., Bauer DuMont V.L., Wallace E.W.J., Pan T., Aquadro C.F., Drummond D.A.. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014; 12:e1002015. PubMed PMC
Chiari Y., Dion K., Colborn J., Parmakelis A., Powel J.R.. On the possible role of tRNA base modifications in the evolution of codon usage: queuosine and Drosophila. J. Mol. Evol. 2010; 70:339–345. PubMed
Tuorto F., Legrand C., Cirzi C., Federico G., Liebers R., Müller M., Ehrenhofer-Murray A.E., Dittmar G., Gröne H.-J., Lyko F.. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37:e99777. PubMed PMC
Kramer S.Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol. Biochem. Parasitol. 2012; 181:61–72. PubMed
Kelly S., Kramer S., Schwede A., Maini P.K., Gull K., Carrington M.. Genome organization is a major component of gene expression control in response to stress and during the cell division cycle in trypanosomes. Open Biol. 2012; 2:120033. PubMed PMC
Fenn K., Matthews K.R.. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 2007; 10:539–546. PubMed PMC
Rubio M.A.T., Alfonzo J.D.. Editing and modification in trypanosomatids: the reshaping of non-coding RNAs. Top. Curr. Gen. 2005; 12:71–86.
Kaneko T., Suzuki T., Kapushoc S.T., Rubio M.A., Ghazvini J., Watanabe K., Simpson L., Suzuki T.. Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: Implication for tRNA sorting mechanism. EMBO J. 2003; 22:657–667. PubMed PMC
Paris Z., Rubio M.A.T., Lukes J., Alfonzo J.D.. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein. RNA. 2009; 15:1398–1406. PubMed PMC
Esseiva A.C., Naguleswaran A., Hemphill A., Schneider A.. Mitochondrial tRNA import in Toxoplasma gondii. J. Biol. Chem. 2004; 279:42363–42368. PubMed
Wirtz E., Leal S., Ochatt C., Cross G.A.M.. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 1999; 99:89–101. PubMed
Brun R., Schonenberger M.. Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979; 36:289–292. PubMed
Oberholzer M., Morand S., Kunz S., Seebeck T.. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol. Biochem. Parasitol. 2006; 145:117–120. PubMed
Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K.. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015; 5:140197. PubMed PMC
Kessler A.C., Kulkarni S.S., Paulines M.J., Rubio M.A.T., Limbach P.A., Paris Z., Alfonzo J.D.. Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biol. 2017; 6286:1–9. PubMed PMC
Igloi G.L., Kössel H.. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic. Acids. Res. 1985; 13:6881–6898. PubMed PMC
Stothard P.The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 2000; 28:1102–1104. PubMed
Alexaki A., Kames J., Holcomb D.D., Athey J., Santana-Quintero L.V., Lam P.V.N., Hamasaki-Katagiri N., Osipova E., Simonyan V., Bar H.et al. .. Codon and codon-pair usage tables (CoCoPUTs): facilitating genetic variation analyses and recombinant gene design. J. Mol. Biol. 2019; 431:2434–2441. PubMed
Athey J., Alexaki A., Osipova E., Rostovtsev A., Santana-Quintero L.V., Katneni U., Simonyan V., Kimchi-Sarfaty C.. A new and updated resource for codon usage tables. BMC Bioinformatics. 2017; 18:391. PubMed PMC
Kapushoc S.T., Alfonzo J.D., Rubio M.A.T., Simpson L.. End processing precedes mitochondrial importation and editing of tRNAs in Leishmania tarentolae. J. Biol. Chem. 2000; 275:37907–37914. PubMed
Crain P.F., Alfonzo J.D., Rozenski J., Kapushoc S.T., McCloskey J.A., Simpson L.. Modification of the universally unmodified uridine-33 in a mitochondria-imported edited tRNA and the role of the anticodon arm structure on editing efficiency. RNA. 2002; 8:752–761. PubMed PMC
Horváth A., Berry E., Maslov D.A.. Translation of the edited mRNA for cytochrome b in trypanosome mitochondria. Science. 2000; 287:1639–1640. PubMed
Horváth A., Horáková E., Dunajčíková P., Verner Z., Pravdová E., lapetová I., Cuninková L., Lukeš J.. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 2005; 58:116–130. PubMed
Ross R., Cao X., Yu N., Limbach P.A.. Sequencemapping of transfer RNA chemical modifications by liquid chromatography tandemmass spectrometry. Methods. 2016; 107:73–78. PubMed PMC
Boland C., Hayes P., Santa-Maria I., Nishimura S., Kelly V.P.. Queuosine formation in eukaryotic tRNA occurs via a mitochondria-localized heteromeric transglycosylase. J. Biol. Chem. 2009; 284:18218–18227. PubMed PMC
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X.et al. .. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic. Acids. Res. 2010; 38:D457–D462. PubMed PMC
Romier C., Reuter K., Suck D., Ficner R.. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 1996; 15:2850–2857. PubMed PMC
Xie W., Liu X., Huang R.H.. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol. 2003; 10:781–788. PubMed
Howes N.K., Farkas W.R.. Studies with a homogeneous enzyme from rabbit erythrocytes catalyzing the insertion of guanine into tRNA. J. Biol. Chem. 1978; 253:9082–9087. PubMed
Slany R.K., Müller S.O.. tRNA-guanine transglycosylase from bovine liver. Eur. J. Biochem. 1995; 230:221–228. PubMed
Hannah R., Sherf B.A., Navarro S.L., Hannah R.R., Wood K.V.. Dual-luciferase TM reporter assay: an advanced co-reporter technology integrating firefly and renilla luciferase assays. Promega notes. 1996; 57:2–8.
Bohnsack M.T., Sloan K.E.. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci. 2018; 75:241–260. PubMed PMC
Mottram J.C., Bell S.D., Nelson R.G., Barry J.D.. tRNAs of Trypanosoma brucei. J. Biol. Chem. 1991; 266:18313–18317. PubMed
Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Göringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A.et al. .. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020; 36:337–355. PubMed PMC
Ramrath D.J.F., Niemann M., Leibundgut M., Bieri P., Prange C., Horn E.K., Leitner A., Boehringer D., Schneider A., Ban N.. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735. PubMed
Škodová-Sveráková I., Horváth A., Maslov D.A.. Identification of the mitochondrially encoded subunit 6 of F1FO ATPase in Trypanosoma brucei. Mol. Biochem. Parasitol. 2015; 201:135–138. PubMed PMC
Aphasizheva I., Maslov D., Wang X., Huang L., Aphasizhev R.. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell. 2011; 42:106–117. PubMed PMC
Dedon P.C., Begley T.J.. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem. Res. Toxicol. 2014; 27:330–337. PubMed PMC
Gaur R., Björk G.R., Tuck S., Varshney U.. Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block. J. Biosci. 2007; 32:747–754. PubMed
Kirtland G.M., Morris T.D., Moore P.H., O’Brian J.J., Edmonds C.G., McCloskey J.A., Katze J.R.. Novel salvage of queuine from queuosine and absence of queuine synthesis in Chlorella pyrenoidosa and Chlamydomonas reinhardtii. J. Bacteriol. 1988; 170:5633–5641. PubMed PMC
Siard T.J., Jacobson K.B., Farkas W.R.. Queuine metabolism and cadmium toxicity in Drosophila melanogaster. Biofactors. 1991; 3:41–47. PubMed
Schachner E., Aschhoff H.J., Kersten H.. Specific changes in lactate levels, lactate dehydrogenase patterns and cytochrome b559 in Dictyostelium discoideum caused by queuine. Eur. J. Biochem. 1984; 139:481–487. PubMed
Matthews K.R.The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 2005; 118:283–290. PubMed PMC
Bringaud F., Rivière L., Coustou V.. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006; 149:1–9. PubMed
Coustou V., Biran M., Breton M., Guegan F., Rivière L., Plazolles N., Nolan D., Barrett M.P., Franconi J.M., Bringaud F.. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J. Biol. Chem. 2008; 283:16343–16354. PubMed
Verner Z., Basu S., Benz C., Dixit S., Dobáková E., Faktorová D., Hashimi H., Horáková E., Huang Z., Paris Z.et al. .. Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell Mol. Biol. 2015; 315:73–151. PubMed
Benne R.RNA-editing in trypanosome mitochondria. BBA - Gene Struct. Expr. 1989; 1007:131–139. PubMed
Simpson L., Shaw J.. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell. 1989; 57:355–366. PubMed PMC
Bouzaidi-Tiali N., Aeby E., Charrière F., Pusnik M., Schneider A.. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J. 2007; 26:4302–4312. PubMed PMC
Sbicego S., Nabholz C.E., Hauser R., Blum B., Schneider A.. In vivo import of unspliced tRNA(Tyr) containing synthetic introns of variable length into mitochondria of Leishmania tarentolae. Nucleic Acids Res. 1998; 26:5251–5255. PubMed PMC
Ehrenhofer-Murray A.E.Cross-talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules. 2017; 7:14. PubMed PMC
Militello K.T., Chen L.M., Ackerman S.E., Mandarano A.H., Valentine E.L.. A map of 5-methylcytosine residues in Trypanosoma brucei tRNA revealed by sodium bisulfite sequencing. Mol. Biochem. Parasitol. 2014; 193:122–126. PubMed PMC
Wang X., Matuszek Z., Huang Y., Parisien M., Dai Q., Clark W., Schwartz M.H., Pan T.. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA. 2018; 24:1305–1313. PubMed PMC
Zíková A., Panigrahi A.K., Uboldi A.D., Dalley R.A., Handman E., Stuart K.. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot. Cell. 2008; 7:1994–2003. PubMed PMC
Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei