Key RNA-binding domains in the La protein establish tRNA modification levels in Trypanosoma brucei
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
GM132254
NIH HHS - United States
25-17400S
Czech Science Foundation
23-08669L
Czech Science Foundation
CZ.02.01.01/00/22_008/0004575
Ministry of Education
HD000412-36
Ministry of Education
PubMed
40637228
PubMed Central
PMC12242769
DOI
10.1093/nar/gkaf594
PII: 8196074
Knihovny.cz E-zdroje
- MeSH
- nukleosid Q metabolismus analogy a deriváty MeSH
- posttranskripční úpravy RNA * MeSH
- proteinové domény MeSH
- proteiny vázající RNA * metabolismus chemie genetika MeSH
- protozoální proteiny * metabolismus chemie genetika MeSH
- RNA transferová * metabolismus genetika MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleosid Q MeSH
- proteiny vázající RNA * MeSH
- protozoální proteiny * MeSH
- RNA transferová * MeSH
The RNA-binding protein La is found in most eukaryotes, and despite being essential in many organisms, its function is not completely clear. Trypanosoma brucei, the causative agent of human African trypanosomiasis, encodes a 'classical' La protein (TbLa) composed of a La-motif, two RNA recognition motifs (RRM1 and RRM2α), a C-terminal short basic motif (SBM), and a nuclear localization signal (NLS). In T. brucei, like in most eukaryotes, position 34 of tRNATyr, -Asp, -Asn and -His is modified with queuosine (Q34). The steady-state levels of queuosine-modified tRNA in the insect form (procyclic) of T. brucei can fluctuate dynamically depending on growth conditions, but the mechanism(s) controlling Q34 levels are not well understood. A well-established function of La is in precursor-tRNA 3'-end metabolism, but in this work, we demonstrate that La also controls Q34-tRNA levels. Individual domain deletions showed that while deletion of La motif or RRM1 causes dysregulation of Q34-tRNA levels, no other domain plays a similar role. We also show that La is important for the normal balance of several additional tRNA modifications. These findings are discussed in the context of substrate competition between La and modification enzymes, also highlighting subcellular localization as a key determinant of tRNA function.
Department of Biomolecular Engineering University of California Santa Cruz CA 95064 United States
Faculty of Science University of South Bohemia České Budějovice 31 370 05 Czech Republic
New England Biolabs Inc 240 County Road Ipswich Massachusetts 01938 United States
The Center for RNA Biology The Ohio State University Columbus Ohio 43210 United States
The Ohio State Biochemistry Program The Ohio State University Columbus Ohio 43210 United States
Zobrazit více v PubMed
Lerner MR, Boyle JA, Hardin JA et al. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 1981; 211:400–2. 10.1126/science.6164096. PubMed DOI
Hendrick JP, Wolin SL, Rinke J et al. Rosmall cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: Further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol. 1981; 1:1138–49. PubMed PMC
Bousquet-Antonelli C, Deragon JM A comprehensive analysis of the La-motif protein superfamily. RNA. 2009; 15:750–64. 10.1261/rna.1478709. PubMed DOI PMC
Deragon J-M Distribution, organization an evolutionary history of La and LARPs in eukaryotes. RNA Biol. 2021; 18:159–67. 10.1080/15476286.2020.1739930. PubMed DOI PMC
Kerkhofs K, Garg J, Fafard-Couture É et al. Altered tRNA processing is linked to a distinct and unusual La protein in Tetrahymena thermophila. Nat Commun. 2022; 13:7332. 10.1038/s41467-022-34796-3. PubMed DOI PMC
Arhin GK, Shen S, Pérez IF et al. Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol. 2005; 144:104–8. 10.1016/j.molbiopara.2005.06.006. PubMed DOI
Kucera NJ, Hodsdon ME, Wolin SL An intrinsically disordered C terminus allows the la protein to assist the biogenesis of diverse noncoding RNA precursors. Proc Natl Acad Sci USA. 2011; 108:1308–13. 10.1073/pnas.1017085108. PubMed DOI PMC
Blewett NH, Maraia RJ La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. Biochim Biophys Acta. 2018; 1861:361–72. 10.1016/j.bbagrm.2018.01.013. PubMed DOI
Maraia RJ, Mattijssen S, Cruz-Gallardo I et al. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WIREs RNA. 2017; 8:10.1002/wrna.1430. 10.1002/wrna.1430. PubMed DOI PMC
Lahr RM, Mack SM, Héroux A et al. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5’TOP sequence. Nucleic Acids Res. 2015; 43:8077–88. 10.1093/nar/gkv748. PubMed DOI PMC
Yang R, Gaidamakov SA, Xie J et al. La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Mol Cell Biol. 2011; 31:542–56. 10.1128/MCB.01162-10. PubMed DOI PMC
Merret R, Martino L, Bousquet-Antonelli C et al. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of la-related proteins. RNA. 2013; 19:36–50. 10.1261/rna.035469.112. PubMed DOI PMC
Fonseca BD, Zakaria C, Jia JJ et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem. 2015; 290:15996–6020. 10.1074/jbc.M114.621730. PubMed DOI PMC
Mattijssen S, Kozlov G, Gaidamakov S et al. The isolated La-module of LARP1 mediates 3’ poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. RNA Biol. 2021; 18:275–89. 10.1080/15476286.2020.1860376. PubMed DOI PMC
Ranjan A, Mattijssen S, Charlly N et al. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. Nucleic Acids Res. 2025; 53:gkaf053. 10.1093/nar/gkaf053. PubMed DOI PMC
Dock-Bregeon AC, Lewis KA, Conte MR The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol. 2021; 18:178–93. 10.1080/15476286.2019.1695712. PubMed DOI PMC
Intine RV, Dundr M, Misteli T et al. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol Cell. 2002; 9:1113–23. 10.1016/S1097-2765(02)00533-6. PubMed DOI
Bayfield MA, Kaiser TE, Intine RV et al. Conservation of a masked nuclear export activity of La proteins and its effects on tRNA maturation. Mol Cell Biol. 2007; 27:3303–12. 10.1128/MCB.00026-07. PubMed DOI PMC
Simons FHM, Broers FJM, Van Venrooij WJ et al. Characterization of cis-acting signals for nuclear import and retention of the La (SS-B) autoantigen. Exp Cell Res. 1996; 224:224–36. 10.1006/excr.1996.0132. PubMed DOI
Marchetti MA, Tschudi C, Kwon H et al. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci. 2000; 906:899–906. 10.1242/jcs.113.5.899. PubMed DOI
Bayfield MA, Yang R, Maraia RJ Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). Biochim Biophys Acta. 2010; 1799:365–78. 10.1016/j.bbagrm.2010.01.011. PubMed DOI PMC
Intine RV, Dundr M, Vassilev A et al. Nonphosphorylated Human La antigen interacts with nucleolin at nucleolar sites involved in rRNA biogenesis. Mol Cell Biol. 2004; 24:10894–904. 10.1128/MCB.24.24.10894-10904.2004. PubMed DOI PMC
Rinke J, Steitz JA Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La Lupus antibodies. Cell. 1982; 29:149–59. 10.1016/0092-8674(82)90099-X. PubMed DOI
Stefano JE Purified lupus antigen la recognizes an oligouridylate stretch common to the 3′ termini of RNA polymerase III transcripts. Cell. 1984; 36:145–54. 10.1016/0092-8674(84)90083-7. PubMed DOI
Teplova M, Yuan YR, Phan AT et al. Structural basis for recognition and sequestration of UUUOH 3′ temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen. Mol Cell. 2006; 21:75–85. 10.1016/j.molcel.2005.10.027. PubMed DOI PMC
Kessler AC, Maraia RJ The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res. 2021; 49:12017–34. 10.1093/nar/gkab1145. PubMed DOI PMC
Zhou S, Van Bortle K The Pol III transcriptome: basic features, recurrent patterns, and emerging roles in cancer. WIREs RNA. 2023; 14:e1782. 10.1002/wrna.1782. PubMed DOI PMC
Maraia RJ, Kenan DJ, Keene JD Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol. 1994; 14:2147–58. PubMed PMC
Yoo CJ, Wolin SL The yeast La protein is required for the 3’ endonucleolytic cleavage that matures tRNA precursors. Cell. 1997; 89:393–402. 10.1016/S0092-8674(00)80220-2. PubMed DOI
Foldynová-Trantírková S, Paris Z, Sturm NR et al. The PubMed DOI
Huang Y, Bayfield MA, Intine RV et al. Separate RNA-binding surfaces on the multifunctional la protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol. 2006; 13:611–8. 10.1038/nsmb1110. PubMed DOI
Ohira T, Miyauchi K, Sakaguchi Y et al. Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae. Nucleic Acids Symp Ser. 2009; 53:301–2. 10.1093/nass/nrp151. PubMed DOI
Calvo O, Cuesta R, Anderson J et al. GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in saccharomyces cerevisiae. Mol Cell Biol. 1999; 19:4167–81. 10.1128/MCB.19.6.4167. PubMed DOI PMC
Kadaba S, Krueger A, Trice T et al. Nuclear surveillance and degradation of hypomodified initiator tRNA met in S. cerevisiae. Genes Dev. 2004; 18:1227–40. 10.1101/gad.1183804. PubMed DOI PMC
Smoczynski J, Yared MJ, Meynier V et al. Advances in the structural and functional understanding of m1A RNA modification. Acc Chem Res. 2023; 57:429–38. 10.1021/acs.accounts.3c00568. PubMed DOI PMC
Copela LA, Chakshusmathi G, Sherrer RL et al. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA. 2006; 12:644–54. 10.1261/rna.2307206. PubMed DOI PMC
Vakiloroayaei A, Shah NS, Oeffinger M et al. The RNA chaperone La promotes pre-TRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res. 2017; 45:11341–55. 10.1093/nar/gkx764. PubMed DOI PMC
Porat J, Vakiloroayaei A, Remnant BM et al. Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem. 2023; 299:105326. 10.1016/j.jbc.2023.105326. PubMed DOI PMC
Pannone BK, Xue D, Wolin SL A rolefor the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J. 1998; 17:7442–53. PubMed PMC
Wolin SL, Cedervall T The La protein. Annu Rev Biochem. 2002; 71:375–403. 10.1146/annurev.biochem.71.090501.150003. PubMed DOI
Chakshusmathi G, Kim SD, Rubinson DA et al. A La protein requirement for efficient pre-tRNA folding. EMBO J. 2003; 22:6562–72. 10.1093/emboj/cdg625. PubMed DOI PMC
Naeeni AR, Conte MR, Bayfield MA RNA chaperone activity of Human La protein is mediated by variant RNA recognition motif. J Biol Chem. 2012; 287:5472–82. 10.1074/jbc.M111.276071. PubMed DOI PMC
Maraia RJ, Intine RV La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr. 2002; 10:41–57. PubMed PMC
Bayfield MA, Vinayak J, Kerkhofs K et al. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol. 2019; 18:168–77. PubMed PMC
Gogakos T, Brown M, Garzia A et al. Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Rep. 2017; 20:1463–75. PubMed PMC
Vinayak J, Marrella SA, Hussain RH et al. Human La binds mRNAs through contacts to the poly(A) tail. Nucleic Acids Res. 2018; 46:4228–40. 10.1093/nar/gky090. PubMed DOI PMC
Bayfield MA, Maraia RJ Precursor-product discrimination by la protein during tRNA metabolism. Nat Struct Mol Biol. 2009; 16:430–7. 10.1038/nsmb.1573. PubMed DOI PMC
Dixit S, Kessler AC, Henderson J et al. Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei. Nucleic Acids Res. 2021; 49:12986–99. 10.1093/nar/gkab1204. PubMed DOI PMC
Kessler AC, Kulkarni SS, Paulines MJ et al. Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biology. 2018; 15:528–36. 10.1080/15476286.2017.1377878. PubMed DOI PMC
Kulkarni S, Rubio MAT, Hegedusová E et al. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res. 2021; 49:8247–60. 10.1093/nar/gkab567. PubMed DOI PMC
Hegedűsová E, Kulkarni S, Burgman B et al. The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei. Nucleic Acids Res. 2019; 47:8620–31. 10.1093/nar/gkz671. PubMed DOI PMC
Marchetti MA, Tschudi C, Kwon H et al. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci. 2000; 113:899–906. 10.1242/jcs.113.5.899. PubMed DOI
LaCount DJ, Bruse S, Hill KL et al. Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. Mol Biochem Parasitol. 2000; 111:67–76. 10.1016/S0166-6851(00)00300-5. PubMed DOI
Shi H, Djikeng A, Mark T et al. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA. 2000; 6:1069–76. 10.1017/S1355838200000297. PubMed DOI PMC
ten Asbroek ALMA, Mol CAAM, Kieft R et al. Stable transformation of PubMed DOI
Chomczynski P, Sacchi∼ N Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162:156–9. PubMed
Cirzi C, Tuorto F Analysis of queuosine tRNA modification using APB Northern blot assay. Methods Mol Biol. 2021; 2298:217–30. PubMed
Spears JL, Gaston KW, Alfonzo JD Analysis of tRNA editing in native and synthetic substrates. Methods Mol Biol. 2011; 718:209–26. PubMed
Ross R, Cao X, Yu N et al. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods. 2016; 107:73–8. 10.1016/j.ymeth.2016.03.016. PubMed DOI PMC
Ross RL, Yu N, Zhao R et al. Automated identification of modified nucleosides during HRAM-LC-MS/MS using a metabolomics ID workflow with neutral loss detection. J Am Soc Mass Spectrom. 2023; 34:2785–92. 10.1021/jasms.3c00298. PubMed DOI PMC
Das U, Shuman S Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase. Nucleic Acids Res. 2013; 41:355–65. 10.1093/nar/gks977. PubMed DOI PMC
Watkins CP, Zhang W, Wylder AC et al. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022; 13:2491. 10.1038/s41467-022-30261-3. PubMed DOI PMC
Upton HE, Ferguson L, Temoche-Diaz MM et al. Low-bias ncRNA libraries using ordered two-template relay: serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci USA. 2021; 118:1–10. 10.1073/pnas.2107900118. PubMed DOI PMC
Holmes AD, Howard JM, Chan PP et al. tRNA Analysis of eXpression (tRAX): a tool for integrating analysis of tRNAs, tRNA-derived small RNAs, and tRNA modifications. Methods Enzymol. 2025; 711:103–23. 10.1101/2022.07.02.498565. DOI
Igloi GL, Kössel H Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 1985; 13:6881–98. 10.1093/nar/13.19.6881. PubMed DOI PMC
Intine RV, Tenenbaum SA, Sakulich AL et al. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell. 2003; 12:1301–7. 10.1016/S1097-2765(03)00429-5. PubMed DOI
Dong G, Chakshusmathi G, Wolin SL et al. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 2004; 23:1000–7. 10.1038/sj.emboj.7600115. PubMed DOI PMC
Brown KA, Sharifi S, Hussain R et al. Distinct dynamic modes enable the engagement of dissimilar ligands in a promiscuous Atypical RNA recognition motif. Biochemistry. 2016; 55:7141–50. 10.1021/acs.biochem.6b00995. PubMed DOI
Fan H, Goodier JL, Chamberlain JR et al. 5′ Processing of tRNA precursors can Be modulated by the Human La antigen phosphoprotein. Mol Cell Biol. 1998; 18:3201–11. 10.1128/MCB.18.6.3201. PubMed DOI PMC
Shan F, Mei S, Zhang J et al. A telomerase subunit homolog La protein from PubMed DOI
Björk GR, Hagervall TG Transfer RNA modification. EcoSal Plus. 2005; 1:10–1128. 10.1128/ecosalplus.4.6.2. PubMed DOI
Jackman JE, Alfonzo JD Transfer RNA modifications: nature's combinatorial chemistry playground. WIREs RNA. 2013; 4:35–48. 10.1002/wrna.1144. PubMed DOI PMC
McCown PJ, Ruszkowska A, Kunkler CN et al. Naturally occurring modified ribonucleosides. WIREs RNA. 2020; 11:e1515. 10.1002/wrna.1595. PubMed DOI PMC
Iwata-Reuyl D An embarrassment of riches: the enzymology of RNA modification. Curr Opin Chem Biol. 2008; 12:126–33. 10.1016/j.cbpa.2008.01.041. PubMed DOI PMC
Zaborske JM, Bauer DuMont VL, Wallace EWJ et al. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014; 12:e1002015. 10.1371/journal.pbio.1002015. PubMed DOI PMC
Helm M, Alfonzo JD Posttranscriptional RNA modifications: playing metabolic games in a cell's chemical legoland. Chem Biol. 2014; 21:174–85. 10.1016/j.chembiol.2013.10.015. PubMed DOI PMC
Fournier MJ, Webb E, Kitchingman GR General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA. BBA Sect Nucleic Acids Protein Synth. 1976; 454:97–113. PubMed
Kowalak JA, Dalluge JJ, McCloskey JA et al. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry. 1994; 33:7869–76. 10.1021/bi00191a014. PubMed DOI
Benko AL, Vaduva G, Martin NC et al. Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci USA. 2000; 97:61–6. 10.1073/pnas.97.1.61. PubMed DOI PMC
Chan CTY, Dyavaiah M, DeMott MS et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010; 6:e1001247. 10.1371/journal.pgen.1001247. PubMed DOI PMC
Hehenberger E, Guo J, Wilken S et al. Phosphate limitation responses in marine green algae are linked to reprogramming of the tRNA epitranscriptome and codon usage bias. Mol Biol Evol. 2023; 40:msad251. 10.1093/molbev/msad251. PubMed DOI PMC
D’Almeida GS, Casius A, Henderson JC et al. tRNATyr has an unusually short half-life in PubMed PMC
Kang BI, Miyauchi K, Matuszewski M et al. Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Res. 2017; 45:2124–36. 10.1093/nar/gkw1120. PubMed DOI PMC
Sample PJ, Kořený L, Paris Z et al. A common tRNA modification at an unusual location: the discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res. 2015; 43:4262–73. 10.1093/nar/gkv286. PubMed DOI PMC
Ehrenhofer-Murray AE Cross-talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules. 2017; 7:14. 10.3390/biom7010014. PubMed DOI PMC
Tuorto F, Legrand C, Cirzi C et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37:e99777. 10.15252/embj.201899777. PubMed DOI PMC
Müller M, Legrand C, Tuorto F et al. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res. 2019; 47:3711–27. 10.1093/nar/gkz063. PubMed DOI PMC
Alfonzo JD, Brown JA, Byers PH et al. A call for direct sequencing of full-length RNAs to identify all modifications. Nat Genet. 2021; 53:1113–6. 10.1038/s41588-021-00903-1. PubMed DOI
Wang X, Li ZT, Yan Y et al. LARP7-Mediated U6 snRNA modification ensures splicing fidelity and spermatogenesis in mice. Mol Cell. 2020; 77:999–1013. 10.1016/j.molcel.2020.01.002. PubMed DOI
Hasler D, Meduri R, Bąk M et al. The Alazami Syndrome-associated protein LARP7 guides U6 small nuclear RNA modification and contributes to splicing robustness. Mol Cell. 2020; 77:1014–31. 10.1016/j.molcel.2020.01.001. PubMed DOI
Porat J, Slat VA, Rader SD et al. The fission yeast methyl phosphate capping enzyme Bmc1 guides 2′-O-methylation of the U6 snRNA. Nucleic Acids Res. 2023; 51:8805–19. 10.1093/nar/gkad563. PubMed DOI PMC