Key RNA-binding domains in the La protein establish tRNA modification levels in Trypanosoma brucei

. 2025 Jul 08 ; 53 (13) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40637228

Grantová podpora
GM132254 NIH HHS - United States
25-17400S Czech Science Foundation
23-08669L Czech Science Foundation
CZ.02.01.01/00/22_008/0004575 Ministry of Education
HD000412-36 Ministry of Education

The RNA-binding protein La is found in most eukaryotes, and despite being essential in many organisms, its function is not completely clear. Trypanosoma brucei, the causative agent of human African trypanosomiasis, encodes a 'classical' La protein (TbLa) composed of a La-motif, two RNA recognition motifs (RRM1 and RRM2α), a C-terminal short basic motif (SBM), and a nuclear localization signal (NLS). In T. brucei, like in most eukaryotes, position 34 of tRNATyr, -Asp, -Asn and -His is modified with queuosine (Q34). The steady-state levels of queuosine-modified tRNA in the insect form (procyclic) of T. brucei can fluctuate dynamically depending on growth conditions, but the mechanism(s) controlling Q34 levels are not well understood. A well-established function of La is in precursor-tRNA 3'-end metabolism, but in this work, we demonstrate that La also controls Q34-tRNA levels. Individual domain deletions showed that while deletion of La motif or RRM1 causes dysregulation of Q34-tRNA levels, no other domain plays a similar role. We also show that La is important for the normal balance of several additional tRNA modifications. These findings are discussed in the context of substrate competition between La and modification enzymes, also highlighting subcellular localization as a key determinant of tRNA function.

Zobrazit více v PubMed

Lerner  MR, Boyle  JA, Hardin  JA  et al.  Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 1981; 211:400–2. 10.1126/science.6164096. PubMed DOI

Hendrick  JP, Wolin  SL, Rinke  J  et al.  Rosmall cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: Further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol. 1981; 1:1138–49. PubMed PMC

Bousquet-Antonelli  C, Deragon  JM  A comprehensive analysis of the La-motif protein superfamily. RNA. 2009; 15:750–64. 10.1261/rna.1478709. PubMed DOI PMC

Deragon  J-M  Distribution, organization an evolutionary history of La and LARPs in eukaryotes. RNA Biol. 2021; 18:159–67. 10.1080/15476286.2020.1739930. PubMed DOI PMC

Kerkhofs  K, Garg  J, Fafard-Couture  É  et al.  Altered tRNA processing is linked to a distinct and unusual La protein in Tetrahymena thermophila. Nat Commun. 2022; 13:7332. 10.1038/s41467-022-34796-3. PubMed DOI PMC

Arhin  GK, Shen  S, Pérez  IF  et al.  Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol. 2005; 144:104–8. 10.1016/j.molbiopara.2005.06.006. PubMed DOI

Kucera  NJ, Hodsdon  ME, Wolin  SL  An intrinsically disordered C terminus allows the la protein to assist the biogenesis of diverse noncoding RNA precursors. Proc Natl Acad Sci USA. 2011; 108:1308–13. 10.1073/pnas.1017085108. PubMed DOI PMC

Blewett  NH, Maraia  RJ  La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. Biochim Biophys Acta. 2018; 1861:361–72. 10.1016/j.bbagrm.2018.01.013. PubMed DOI

Maraia  RJ, Mattijssen  S, Cruz-Gallardo  I  et al.  The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WIREs RNA. 2017; 8:10.1002/wrna.1430. 10.1002/wrna.1430. PubMed DOI PMC

Lahr  RM, Mack  SM, Héroux  A  et al.  The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5’TOP sequence. Nucleic Acids Res. 2015; 43:8077–88. 10.1093/nar/gkv748. PubMed DOI PMC

Yang  R, Gaidamakov  SA, Xie  J  et al.  La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Mol Cell Biol. 2011; 31:542–56. 10.1128/MCB.01162-10. PubMed DOI PMC

Merret  R, Martino  L, Bousquet-Antonelli  C  et al.  The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of la-related proteins. RNA. 2013; 19:36–50. 10.1261/rna.035469.112. PubMed DOI PMC

Fonseca  BD, Zakaria  C, Jia  JJ  et al.  La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem. 2015; 290:15996–6020. 10.1074/jbc.M114.621730. PubMed DOI PMC

Mattijssen  S, Kozlov  G, Gaidamakov  S  et al.  The isolated La-module of LARP1 mediates 3’ poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. RNA Biol. 2021; 18:275–89. 10.1080/15476286.2020.1860376. PubMed DOI PMC

Ranjan  A, Mattijssen  S, Charlly  N  et al.  The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. Nucleic Acids Res. 2025; 53:gkaf053. 10.1093/nar/gkaf053. PubMed DOI PMC

Dock-Bregeon  AC, Lewis  KA, Conte  MR  The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol. 2021; 18:178–93. 10.1080/15476286.2019.1695712. PubMed DOI PMC

Intine  RV, Dundr  M, Misteli  T  et al.  Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol Cell. 2002; 9:1113–23. 10.1016/S1097-2765(02)00533-6. PubMed DOI

Bayfield  MA, Kaiser  TE, Intine  RV  et al.  Conservation of a masked nuclear export activity of La proteins and its effects on tRNA maturation. Mol Cell Biol. 2007; 27:3303–12. 10.1128/MCB.00026-07. PubMed DOI PMC

Simons  FHM, Broers  FJM, Van Venrooij  WJ  et al.  Characterization of cis-acting signals for nuclear import and retention of the La (SS-B) autoantigen. Exp Cell Res. 1996; 224:224–36. 10.1006/excr.1996.0132. PubMed DOI

Marchetti  MA, Tschudi  C, Kwon  H  et al.  Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci. 2000; 906:899–906. 10.1242/jcs.113.5.899. PubMed DOI

Bayfield  MA, Yang  R, Maraia  RJ  Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). Biochim Biophys Acta. 2010; 1799:365–78. 10.1016/j.bbagrm.2010.01.011. PubMed DOI PMC

Intine  RV, Dundr  M, Vassilev  A  et al.  Nonphosphorylated Human La antigen interacts with nucleolin at nucleolar sites involved in rRNA biogenesis. Mol Cell Biol. 2004; 24:10894–904. 10.1128/MCB.24.24.10894-10904.2004. PubMed DOI PMC

Rinke  J, Steitz  JA  Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La Lupus antibodies. Cell. 1982; 29:149–59. 10.1016/0092-8674(82)90099-X. PubMed DOI

Stefano  JE  Purified lupus antigen la recognizes an oligouridylate stretch common to the 3′ termini of RNA polymerase III transcripts. Cell. 1984; 36:145–54. 10.1016/0092-8674(84)90083-7. PubMed DOI

Teplova  M, Yuan  YR, Phan  AT  et al.  Structural basis for recognition and sequestration of UUUOH 3′ temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen. Mol Cell. 2006; 21:75–85. 10.1016/j.molcel.2005.10.027. PubMed DOI PMC

Kessler  AC, Maraia  RJ  The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res. 2021; 49:12017–34. 10.1093/nar/gkab1145. PubMed DOI PMC

Zhou  S, Van Bortle  K  The Pol III transcriptome: basic features, recurrent patterns, and emerging roles in cancer. WIREs RNA. 2023; 14:e1782. 10.1002/wrna.1782. PubMed DOI PMC

Maraia  RJ, Kenan  DJ, Keene  JD  Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol. 1994; 14:2147–58. PubMed PMC

Yoo  CJ, Wolin  SL  The yeast La protein is required for the 3’ endonucleolytic cleavage that matures tRNA precursors. Cell. 1997; 89:393–402. 10.1016/S0092-8674(00)80220-2. PubMed DOI

Foldynová-Trantírková  S, Paris  Z, Sturm  NR  et al.  The PubMed DOI

Huang  Y, Bayfield  MA, Intine  RV  et al.  Separate RNA-binding surfaces on the multifunctional la protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol. 2006; 13:611–8. 10.1038/nsmb1110. PubMed DOI

Ohira  T, Miyauchi  K, Sakaguchi  Y  et al.  Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae. Nucleic Acids Symp Ser. 2009; 53:301–2. 10.1093/nass/nrp151. PubMed DOI

Calvo  O, Cuesta  R, Anderson  J  et al.  GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in saccharomyces cerevisiae. Mol Cell Biol. 1999; 19:4167–81. 10.1128/MCB.19.6.4167. PubMed DOI PMC

Kadaba  S, Krueger  A, Trice  T  et al.  Nuclear surveillance and degradation of hypomodified initiator tRNA met in S. cerevisiae. Genes Dev. 2004; 18:1227–40. 10.1101/gad.1183804. PubMed DOI PMC

Smoczynski  J, Yared  MJ, Meynier  V  et al.  Advances in the structural and functional understanding of m1A RNA modification. Acc Chem Res. 2023; 57:429–38. 10.1021/acs.accounts.3c00568. PubMed DOI PMC

Copela  LA, Chakshusmathi  G, Sherrer  RL  et al.  The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA. 2006; 12:644–54. 10.1261/rna.2307206. PubMed DOI PMC

Vakiloroayaei  A, Shah  NS, Oeffinger  M  et al.  The RNA chaperone La promotes pre-TRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res. 2017; 45:11341–55. 10.1093/nar/gkx764. PubMed DOI PMC

Porat  J, Vakiloroayaei  A, Remnant  BM  et al.  Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem. 2023; 299:105326. 10.1016/j.jbc.2023.105326. PubMed DOI PMC

Pannone  BK, Xue  D, Wolin  SL  A rolefor the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J. 1998; 17:7442–53. PubMed PMC

Wolin  SL, Cedervall  T  The La protein. Annu Rev Biochem. 2002; 71:375–403. 10.1146/annurev.biochem.71.090501.150003. PubMed DOI

Chakshusmathi  G, Kim  SD, Rubinson  DA  et al.  A La protein requirement for efficient pre-tRNA folding. EMBO J. 2003; 22:6562–72. 10.1093/emboj/cdg625. PubMed DOI PMC

Naeeni  AR, Conte  MR, Bayfield  MA  RNA chaperone activity of Human La protein is mediated by variant RNA recognition motif. J Biol Chem. 2012; 287:5472–82. 10.1074/jbc.M111.276071. PubMed DOI PMC

Maraia  RJ, Intine  RV  La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr. 2002; 10:41–57. PubMed PMC

Bayfield  MA, Vinayak  J, Kerkhofs  K  et al.  La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol. 2019; 18:168–77. PubMed PMC

Gogakos  T, Brown  M, Garzia  A  et al.  Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Rep. 2017; 20:1463–75. PubMed PMC

Vinayak  J, Marrella  SA, Hussain  RH  et al.  Human La binds mRNAs through contacts to the poly(A) tail. Nucleic Acids Res. 2018; 46:4228–40. 10.1093/nar/gky090. PubMed DOI PMC

Bayfield  MA, Maraia  RJ  Precursor-product discrimination by la protein during tRNA metabolism. Nat Struct Mol Biol. 2009; 16:430–7. 10.1038/nsmb.1573. PubMed DOI PMC

Dixit  S, Kessler  AC, Henderson  J  et al.  Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei. Nucleic Acids Res. 2021; 49:12986–99. 10.1093/nar/gkab1204. PubMed DOI PMC

Kessler  AC, Kulkarni  SS, Paulines  MJ  et al.  Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biology. 2018; 15:528–36. 10.1080/15476286.2017.1377878. PubMed DOI PMC

Kulkarni  S, Rubio  MAT, Hegedusová  E  et al.  Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res. 2021; 49:8247–60. 10.1093/nar/gkab567. PubMed DOI PMC

Hegedűsová  E, Kulkarni  S, Burgman  B  et al.  The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei. Nucleic Acids Res. 2019; 47:8620–31. 10.1093/nar/gkz671. PubMed DOI PMC

Marchetti  MA, Tschudi  C, Kwon  H  et al.  Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J Cell Sci. 2000; 113:899–906. 10.1242/jcs.113.5.899. PubMed DOI

LaCount  DJ, Bruse  S, Hill  KL  et al.  Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. Mol Biochem Parasitol. 2000; 111:67–76. 10.1016/S0166-6851(00)00300-5. PubMed DOI

Shi  H, Djikeng  A, Mark  T  et al.  Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA. 2000; 6:1069–76. 10.1017/S1355838200000297. PubMed DOI PMC

ten Asbroek  ALMA, Mol  CAAM, Kieft  R  et al.  Stable transformation of PubMed DOI

Chomczynski  P, Sacchi∼  N  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162:156–9. PubMed

Cirzi  C, Tuorto  F  Analysis of queuosine tRNA modification using APB Northern blot assay. Methods Mol Biol. 2021; 2298:217–30. PubMed

Spears  JL, Gaston  KW, Alfonzo  JD  Analysis of tRNA editing in native and synthetic substrates. Methods Mol Biol. 2011; 718:209–26. PubMed

Ross  R, Cao  X, Yu  N  et al.  Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods. 2016; 107:73–8. 10.1016/j.ymeth.2016.03.016. PubMed DOI PMC

Ross  RL, Yu  N, Zhao  R  et al.  Automated identification of modified nucleosides during HRAM-LC-MS/MS using a metabolomics ID workflow with neutral loss detection. J Am Soc Mass Spectrom. 2023; 34:2785–92. 10.1021/jasms.3c00298. PubMed DOI PMC

Das  U, Shuman  S  Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase. Nucleic Acids Res. 2013; 41:355–65. 10.1093/nar/gks977. PubMed DOI PMC

Watkins  CP, Zhang  W, Wylder  AC  et al.  A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022; 13:2491. 10.1038/s41467-022-30261-3. PubMed DOI PMC

Upton  HE, Ferguson  L, Temoche-Diaz  MM  et al.  Low-bias ncRNA libraries using ordered two-template relay: serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci USA. 2021; 118:1–10. 10.1073/pnas.2107900118. PubMed DOI PMC

Holmes  AD, Howard  JM, Chan  PP  et al.  tRNA Analysis of eXpression (tRAX): a tool for integrating analysis of tRNAs, tRNA-derived small RNAs, and tRNA modifications. Methods Enzymol. 2025; 711:103–23. 10.1101/2022.07.02.498565. DOI

Igloi  GL, Kössel  H  Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 1985; 13:6881–98. 10.1093/nar/13.19.6881. PubMed DOI PMC

Intine  RV, Tenenbaum  SA, Sakulich  AL  et al.  Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell. 2003; 12:1301–7. 10.1016/S1097-2765(03)00429-5. PubMed DOI

Dong  G, Chakshusmathi  G, Wolin  SL  et al.  Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 2004; 23:1000–7. 10.1038/sj.emboj.7600115. PubMed DOI PMC

Brown  KA, Sharifi  S, Hussain  R  et al.  Distinct dynamic modes enable the engagement of dissimilar ligands in a promiscuous Atypical RNA recognition motif. Biochemistry. 2016; 55:7141–50. 10.1021/acs.biochem.6b00995. PubMed DOI

Fan  H, Goodier  JL, Chamberlain  JR  et al.  5′ Processing of tRNA precursors can Be modulated by the Human La antigen phosphoprotein. Mol Cell Biol. 1998; 18:3201–11. 10.1128/MCB.18.6.3201. PubMed DOI PMC

Shan  F, Mei  S, Zhang  J  et al.  A telomerase subunit homolog La protein from PubMed DOI

Björk  GR, Hagervall  TG  Transfer RNA modification. EcoSal Plus. 2005; 1:10–1128. 10.1128/ecosalplus.4.6.2. PubMed DOI

Jackman  JE, Alfonzo  JD  Transfer RNA modifications: nature's combinatorial chemistry playground. WIREs RNA. 2013; 4:35–48. 10.1002/wrna.1144. PubMed DOI PMC

McCown  PJ, Ruszkowska  A, Kunkler  CN  et al.  Naturally occurring modified ribonucleosides. WIREs RNA. 2020; 11:e1515. 10.1002/wrna.1595. PubMed DOI PMC

Iwata-Reuyl  D  An embarrassment of riches: the enzymology of RNA modification. Curr Opin Chem Biol. 2008; 12:126–33. 10.1016/j.cbpa.2008.01.041. PubMed DOI PMC

Zaborske  JM, Bauer  DuMont VL, Wallace  EWJ  et al.  A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014; 12:e1002015. 10.1371/journal.pbio.1002015. PubMed DOI PMC

Helm  M, Alfonzo  JD  Posttranscriptional RNA modifications: playing metabolic games in a cell's chemical legoland. Chem Biol. 2014; 21:174–85. 10.1016/j.chembiol.2013.10.015. PubMed DOI PMC

Fournier  MJ, Webb  E, Kitchingman  GR  General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA. BBA Sect Nucleic Acids Protein Synth. 1976; 454:97–113. PubMed

Kowalak  JA, Dalluge  JJ, McCloskey  JA  et al.  The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry. 1994; 33:7869–76. 10.1021/bi00191a014. PubMed DOI

Benko  AL, Vaduva  G, Martin  NC  et al.  Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci USA. 2000; 97:61–6. 10.1073/pnas.97.1.61. PubMed DOI PMC

Chan  CTY, Dyavaiah  M, DeMott  MS  et al.  A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010; 6:e1001247. 10.1371/journal.pgen.1001247. PubMed DOI PMC

Hehenberger  E, Guo  J, Wilken  S  et al.  Phosphate limitation responses in marine green algae are linked to reprogramming of the tRNA epitranscriptome and codon usage bias. Mol Biol Evol. 2023; 40:msad251. 10.1093/molbev/msad251. PubMed DOI PMC

D’Almeida  GS, Casius  A, Henderson  JC  et al.  tRNATyr has an unusually short half-life in PubMed PMC

Kang  BI, Miyauchi  K, Matuszewski  M  et al.  Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Res. 2017; 45:2124–36. 10.1093/nar/gkw1120. PubMed DOI PMC

Sample  PJ, Kořený  L, Paris  Z  et al.  A common tRNA modification at an unusual location: the discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res. 2015; 43:4262–73. 10.1093/nar/gkv286. PubMed DOI PMC

Ehrenhofer-Murray  AE  Cross-talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules. 2017; 7:14. 10.3390/biom7010014. PubMed DOI PMC

Tuorto  F, Legrand  C, Cirzi  C  et al.  Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37:e99777. 10.15252/embj.201899777. PubMed DOI PMC

Müller  M, Legrand  C, Tuorto  F  et al.  Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res. 2019; 47:3711–27. 10.1093/nar/gkz063. PubMed DOI PMC

Alfonzo  JD, Brown  JA, Byers  PH  et al.  A call for direct sequencing of full-length RNAs to identify all modifications. Nat Genet. 2021; 53:1113–6. 10.1038/s41588-021-00903-1. PubMed DOI

Wang  X, Li  ZT, Yan  Y  et al.  LARP7-Mediated U6 snRNA modification ensures splicing fidelity and spermatogenesis in mice. Mol Cell. 2020; 77:999–1013. 10.1016/j.molcel.2020.01.002. PubMed DOI

Hasler  D, Meduri  R, Bąk  M  et al.  The Alazami Syndrome-associated protein LARP7 guides U6 small nuclear RNA modification and contributes to splicing robustness. Mol Cell. 2020; 77:1014–31. 10.1016/j.molcel.2020.01.001. PubMed DOI

Porat  J, Slat  VA, Rader  SD  et al.  The fission yeast methyl phosphate capping enzyme Bmc1 guides 2′-O-methylation of the U6 snRNA. Nucleic Acids Res. 2023; 51:8805–19. 10.1093/nar/gkad563. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...