A common tRNA modification at an unusual location: the discovery of wyosine biosynthesis in mitochondria

. 2015 Apr 30 ; 43 (8) : 4262-73. [epub] 20150406

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25845597

Grantová podpora
R01 GM058843 NIGMS NIH HHS - United States
R01 GM084065 NIGMS NIH HHS - United States
GM058843 NIGMS NIH HHS - United States
GM084065 NIGMS NIH HHS - United States

Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids. We also show that these modifications are important for mitochondrial function, underscoring their biological significance. This work focuses on TyW1, the enzyme required for the most critical step of wyosine biosynthesis. Based on molecular phylogeny, we suggest that the kinetoplastids pathways evolved via gene duplication and acquisition of an FMN-binding domain now prevalent in TyW1 of most eukaryotes. These findings are discussed in the context of the extensive U-insertion RNA editing in trypanosome mitochondria, which may have provided selective pressure for maintenance of mitochondrial wyosine in this lineage.

Zobrazit více v PubMed

Jackman J.E., Alfonzo J.D. Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdiscip. Rev. RNA. 2013;4:35–48. PubMed PMC

Machnicka M.A., Milanowska K., Osman Oglou O., Purta E., Kurkowska M., Olchowik A., Januszewski W., Kalinowski S., Dunin-Horkawicz S., Rother K.M., et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013;41:D262–D267. PubMed PMC

Agris P.F. Decoding the genome: a modified view. Nucleic Acids Res. 2004;32:223–238. PubMed PMC

Phizicky E.M., Hopper A.K. tRNA biology charges to the front. Genes Dev. 2010;24:1832–1860. PubMed PMC

Grosjean H. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Austin, TX: Landes Bioscience; 2009.

Urbonavicius J., Qian Q., Durand J.M., Hagervall T.G., Bjork G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 2001;20:4863–4873. PubMed PMC

Bjork G.R., Jacobsson K., Nilsson K., Johansson M.J., Bystrom A.S., Persson O.P. A primordial tRNA modification required for the evolution of life. EMBO J. 2001;20:231–239. PubMed PMC

Lamichhane T.N., Blewett N.H., Crawford A.K., Cherkasova V.A., Iben J.R., Begley T.J., Farabaugh P.J., Maraia R.J. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol. Cell. Biol. 2013;33:2918–2929. PubMed PMC

Maehigashi T., Dunkle J.A., Miles S.J., Dunham C.M. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc. Natl. Acad. Sci. U.S.A. 2014;111:12740–12745. PubMed PMC

Caillet J., Droogmans L. Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J. Bacteriol. 1988;170:4147–4152. PubMed PMC

El Yacoubi B., Hatin I., Deutsch C., Kahveci T., Rousset J.P., Iwata-Reuyl D., Murzin A.G., de Crecy-Lagard V. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J. 2011;30:882–893. PubMed PMC

Deutsch C., El Yacoubi B., de Crecy-Lagard V., Iwata-Reuyl D. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J. Biol. Chem. 2012;287:13666–13673. PubMed PMC

Noma A., Kirino Y., Ikeuchi Y., Suzuki T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 2006;25:2142–2154. PubMed PMC

Bystrom A.S., von Gabain A., Bjork G.R. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species. J. Mol. Biol. 1989;208:575–586. PubMed

Bjork G.R., Wikstrom P.M., Bystrom A.S. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science. 1989;244:986–989. PubMed

Lee C., Kramer G., Graham D.E., Appling D.R. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. J. Biol. Chem. 2007;282:27744–27753. PubMed

Brule H., Elliott M., Redlak M., Zehner Z.E., Holmes W.M. Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Biochemistry. 2004;43:9243–9255. PubMed

Perche-Letuvee P., Kathirvelu V., Berggren G., Clemancey M., Latour J.M., Maurel V., Douki T., Armengaud J., Mulliez E., Fontecave M., et al. 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S](+2) cluster that interacts with the pyruvate co-substrate. J. Biol. Chem. 2012;287:41174–41185. PubMed PMC

Young A.P., Bandarian V. Pyruvate is the source of the two carbons that are required for formation of the imidazoline ring of 4-demethylwyosine. Biochemistry. 2011;50:10573–10575. PubMed PMC

Noma A., Ishitani R., Kato M., Nagao A., Nureki O., Suzuki T. Expanding role of the jumonji C domain as an RNA hydroxylase. J. Biol. Chem. 2010;285:34503–34507. PubMed PMC

de Crecy-Lagard V., Brochier-Armanet C., Urbonavicius J., Fernandez B., Phillips G., Lyons B., Noma A., Alvarez S., Droogmans L., Armengaud J., et al. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol. Biol. Evol. 2010;27:2062–2077. PubMed PMC

Agris P.F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep. 2008;9:629–635. PubMed PMC

Juhling F., Morl M., Hartmann R.K., Sprinzl M., Stadler P.F., Putz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009;37:D159–D162. PubMed PMC

Simpson A.M., Suyama Y., Dewes H., Campbell D.A., Simpson L. Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res. 1989;17:5427–5445. PubMed PMC

Wickstead B., Ersfeld K., Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 2002;125:211–216. PubMed

Hashimi H., Zikova A., Panigrahi A.K., Stuart K.D., Lukes J. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA. 2008;14:970–980. PubMed PMC

Horvath A., Horakova E., Dunajcikova P., Verner Z., Pravdova E., Slapetova I., Cuninkova L., Lukes J. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 2005;58:116–130. PubMed

Paris Z., Changmai P., Rubio M.A., Zikova A., Stuart K.D., Alfonzo J.D., Lukes J. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J. Biol. Chem. 2010;285:22394–22402. PubMed PMC

Katoh K., Kuma K., Toh H., Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. PubMed PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–542. PubMed PMC

Punta M., Coggill P.C., Eberhardt R.Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G., Clements J., et al. The Pfam protein families database. Nucleic Acids Res. 2014;40:D290–D301. PubMed PMC

Kasai H., Goto M., Ikeda K., Zama M., Mizuno Y., Takemura S., Matsuura S., Sugimoto T., Goto T. Structure of wye (Yt base) and wyosine (Yt) from Torulopsis utilis phenylalanine transfer ribonucleic acid. Biochemistry. 1976;15:898–904. PubMed

Kolev N.G., Tschudi C., Ullu E. RNA interference in protozoan parasites: achievements and challenges. Eukaryot. Cell. 2011;10:1156–1163. PubMed PMC

Paris Z., Horakova E., Rubio M.A., Sample P., Fleming I.M., Armocida S., Lukes J., Alfonzo J.D. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function. RNA. 2013;19:649–658. PubMed PMC

Spears J.L., Gaston K.W., Alfonzo J.D. Analysis of tRNA editing in native and synthetic substrates. Methods Mol. Biol. 718:209–226. PubMed

Gostincar C., Turk M., Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J. Membr. Biol. 2010;233:63–72. PubMed

Alfonzo J.D., Thiemann O., Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997;25:3751–3759. PubMed PMC

Waas W.F., Druzina Z., Hanan M., Schimmel P. Role of a tRNA base modification and its precursors in frameshifting in eukaryotes. J. Biol. Chem. 2007;282:26026–26034. PubMed

Ochsenreiter T., Cipriano M., Hajduk S.L. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS ONE. 2008;3:e1566. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...