Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L

. 2021 Sep 21 ; 11 (1) : 18735. [epub] 20210921

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34548532
Odkazy

PubMed 34548532
PubMed Central PMC8455632
DOI 10.1038/s41598-021-97767-6
PII: 10.1038/s41598-021-97767-6
Knihovny.cz E-zdroje

One promising area in understanding the responses of plants to ongoing global climate change is the adaptative effect of polyploidy. This work examines whether there is a coupling between the distribution of cytotypes and their biogeographical niche, and how different niches will affect their potential range. The study uses a range of techniques including flow cytometry, gradient and niche analysis, as well as distribution modelling. In addition, climatic, edaphic and habitat data was used to analyse environmental patterns and potential ranges of cytotypes in the first wide-range study of Festuca amethystina-a mixed-ploidy mountain grass. The populations were found to be ploidy homogeneous and demonstrate a parapatric pattern of cytotype distribution. Potential contact zones have been identified. The tetraploids have a geographically broader distribution than diploids; they also tend to occur at lower altitudes and grow in more diverse climates, geological units and habitats. Moreover, tetraploids have a more extensive potential range, being six-fold larger than diploids. Montane pine forests were found to be a focal environment suitable for both cytotypes, which has a central place in the environmental space of the whole species. Our findings present polyploidy as a visible driver of geographical, ecological and adaptive variation within the species.

Zobrazit více v PubMed

Otto SP. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B. 2018;285:20182047. doi: 10.1098/rspb.2018.2047. PubMed DOI PMC

Moritz C, Agudo R. The future of species under climate change: Resilience or decline? Science. 2013;341:504–508. doi: 10.1126/science.1237190. PubMed DOI

Parmesan C, Hanley ME. Plants and climate change: Complexities and surprises. Ann. Bot. 2015;116:849–864. doi: 10.1093/aob/mcv169. PubMed DOI PMC

Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 2000;97:7051–7057. doi: 10.1073/pnas.97.13.7051. PubMed DOI PMC

Barker MS, Husband BC, Chris Pires J. Spreading winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 2016;103:1139–1145. doi: 10.3732/ajb.1600272. PubMed DOI

Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. doi: 10.1038/nrg.2017.26. PubMed DOI

Madlung A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb) 2013;110:99–104. doi: 10.1038/hdy.2012.79. PubMed DOI PMC

Soltis DE, Visger CJ, Marchant BD, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016;103:1146–1166. doi: 10.3732/ajb.1500501. PubMed DOI

Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 2011;108:7096–7101. doi: 10.1073/pnas.1016631108. PubMed DOI PMC

Oswald BP, Nuismer SL. Neopolyploidy and diversification in Heucheragrossulariifolia. Evolution. 2011;65:1667–1679. doi: 10.1111/j.1558-5646.2010.01208.x. PubMed DOI PMC

Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. 2017 doi: 10.1016/j.tplants.2017.09.011. PubMed DOI

Fowler NL, Levin DA. Critical factors in the establishment of allopolyploids. Am. J. Bot. 2016;103:1236–1251. doi: 10.3732/ajb.1500407. PubMed DOI

Husband BC, Baldwin SJ, Suda J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In: Leitch I, Greilhuber J, Doležel J, Wendel J, editors. Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes. Springer; 2013. pp. 255–276.

Te Beest M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012;109:19–45. doi: 10.1093/aob/mcr277. PubMed DOI PMC

Watanabe K. The cytogeography of the genus Eupatorium (Compositae)—A review. Plant Species Biol. 1986;1:99–116. doi: 10.1111/j.1442-1984.1986.tb00019.x. DOI

Novak SJ, Soltis DE, Soltis PS. Ownbey’s Tragopogons: 40 years later. Am. J. Bot. 1991;78:1586–1600. doi: 10.1002/j.1537-2197.1991.tb11438.x. DOI

Van Dijk P, Bakx-Schotman T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol. Ecol. 1997;6:345–352. doi: 10.1046/j.1365-294X.1997.00199.x. DOI

Martin SL, Husband BC. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 2009;97:913–922. doi: 10.1111/j.1365-2745.2009.01543.x. DOI

Suda, J., Kron, P., Husband, B. C. & Trávníček, P. Flow cytometry and ploidy: Applications in plant systematics, ecology and evolutionary biology. in Flow Cytometry with Plant Cells 103–130 (Wiley, 2007). 10.1002/9783527610921.ch5.

Ramsey J, Ramsey TS. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:1–76. doi: 10.1098/rstb.2013.0352. PubMed DOI PMC

Goldblatt P. Polyploidy in angiosperms: Monocotyledons. In: Lewis WH, editor. Polyploidy. Basic Life Sciences. Springer; 1980. pp. 219–239. PubMed

Levy AA, Feldman M. The impact of polyploidy on grass genome evolution. Plant Physiol. 2002;130:1587–1593. doi: 10.1104/pp.015727. PubMed DOI PMC

Kellogg A. Flowering Plants Monocots Poaceae. Springer; 2015.

Estep MC, et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. 2014;111:15149–15154. doi: 10.1073/pnas.1404177111. PubMed DOI PMC

Minaya M, et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 2017;44:1980–1993. doi: 10.1111/jbi.13012. DOI

Torrecilla P, Catalán P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 2002;27:241–251.

Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot.101, 421–433 (2008). PubMed PMC

Meusel H, Jäger E, Weinert E. Vergleichende Chorologie der Zentral-europäischen Flora. G. Fischer; 1965.

Kiedrzyński M, Zielińska KM, Kiedrzyńska E, Jakubowska-Gabara J. Regional climate and geology affecting habitat availability for a relict plant in a plain landscape: The case of Festucaamethystina L. in Poland. Plant Ecol. Divers. 2015;8:331–341. doi: 10.1080/17550874.2014.904951. DOI

Kiedrzyński M, Zielińska KM, Rewicz A, Kiedrzyńska E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 2017;122:1359–1370. doi: 10.1002/2016JG003629. DOI

Petrova, A. & Kozuharov, S. Citotaxonomicno proucvane na balgarski vidove ot roda Festuca L. in IV Nacionalna Konferencija Po Botanika 1 (ed. Trudova) 16–23 (1987).

Stählin, A. Morphologische und zytologische Untersuchungen an Gramineen. Wiss. Arch. Landwirtschaft., Abt. A, Pflanzenbau 1, 330–398 (1929).

Wittmann, H. & Strobl, W. Beitrag zur Kenntnis von Festuca amethystina L. im Bundesland Salzburg. Florist. Mitt. Salzburg 9, 3–8 (1984).

La Sorte FA, Jetz W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B Biol. Sci. 2010;277:3401–3410. doi: 10.1098/rspb.2010.0612. PubMed DOI PMC

Elsen PR, Tingley MW. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change. 2015;5:772–776. doi: 10.1038/nclimate2656. DOI

Šmarda P, Müller J, Vraná J, Kočí K. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae) Biologia. 2005;60:1–6.

Rewicz A, et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ. 2018;2018:e5576. doi: 10.7717/peerj.5576. PubMed DOI PMC

Roleček J, Dřevojan P, Šmarda P. First record of Festucaamethystina L. from the transylvanian basin (Romania) Contrib. Bot. 2019;54:91–97. doi: 10.24193/Contrib.Bot.54.6. DOI

Phillips SJ, Dudík M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecograpy. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI

Segraves KA, Thompson JN, Soltis PS, Soltis DE. Multiple origins of polyploidy and the geographic structure of Heucheragrossulariifolia. Mol. Ecol. 1999;8:253–262. doi: 10.1046/j.1365-294X.1999.00562.x. DOI

Levin, D. A. Minority cytotype exclusion in local plant populations. TAXON vol. 24. https://eurekamag.com/pdf/000/000139096.pdf (1975).

Pils G. Systematics, distribution, and karyology of the Festuca violacea Group (Poaceae) in the Eastern Alps. Plant Syst. Evol. 1980;136:73–124. doi: 10.1007/BF00985314. DOI

Stebbins GL. Chromosomal Evolution in Higher Plants. Addison-Wesley; 1971.

Stutz HC, Sanderson SC. Evolutionary studies in Atriplex: Chromosome races of A. confertifolia (shadscale) Am. J. Bot. 1983;70:1536–1547. doi: 10.1002/j.1537-2197.1983.tb10857.x. DOI

Husband BC, Schemske DW. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae) Am. J. Bot. 1998;85:1688–1694. doi: 10.2307/2446502. PubMed DOI

Hardy OJ, Vanderhoeven S, De Loose M, Meerts P. Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaureajacea) from a contact zone in the Belgian Ardennes. New Phytol. 2000;146:281–290. doi: 10.1046/j.1469-8137.2000.00631.x. PubMed DOI

Gauthier P, Lumaret R, Bédécarrats A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity (Edinb) 1998;80:683–693. doi: 10.1046/j.1365-2540.1998.00334.x. DOI

Schönswetter P, et al. Sympatric diploid and hexaploid cytotypes of Seneciocarniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 2007;120:721–725. doi: 10.1007/s10265-007-0108-x. PubMed DOI

Petit C, Bretagnolle F, Felber F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 1999;14:306–311. doi: 10.1016/S0169-5347(99)01608-0. PubMed DOI

Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae) PLoS One. 2015;10:e0133748. doi: 10.1371/journal.pone.0133748. PubMed DOI PMC

Marchant DB, Soltis DE, Soltis PS. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 2016;212:708–718. doi: 10.1111/nph.14069. PubMed DOI

Arrigo N, et al. Is hybridization driving the evolution of climatic niche in Alyssum montanum. Am. J. Bot. 2016;103:1348–1357. doi: 10.3732/ajb.1500368. PubMed DOI

Laport RG, Minckley RL, Ramsey J. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. Am. J. Bot. 2016;103:1358–1374. doi: 10.3732/ajb.1600105. PubMed DOI

Mosquin T. Evidence for autopolyploidy in Epilobiumangustifolium (Onagraceae) Evolution (N. Y.) 1967;21:713–719. PubMed

Szafer W. The mountain element in the flora of Polish Plain. Rozpr. Wydz. Mat. PAU Ser. 3 Dział B. 1930;69:83–196.

Kiedrzyński M, Zielińska KM, Kiedrzyńska E, Rewicz A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 2017;31:815–827. doi: 10.1007/s10682-017-9913-4. DOI

Babić VP, et al. Temperature and other microclimate conditions in the oak forests on Fruška Gora (Serbia) Therm. Sci. 2015;19:S415–S425. doi: 10.2298/TSCI150430116B. DOI

Jakubowska-Gabara J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio. 1996;124:45–59. doi: 10.1007/BF00045143. DOI

Roleček J. Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method? Preslia. 2007;79:1–21.

Indreica A. Festuca amethystina in the sessile oak forests from upper basin of Olt River. Contrib. Bot. 2007;42:11–18.

Jakubowska-Gabara J. Festuca amethystina L. In: Kaźmierczakowa R, Zarzycki K, Mirek Z, editors. The Polish Red Book of Plants. Pteridophytes and Vascular Plants. Institute of Nature Conservation PAS; 2014. pp. 616–618.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI

Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).

Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press; 2014.

Wilke, C. O. Ridgeline Plots in ‘ggplot2’. https://wilkelab.org/ggridges/index.html (2021).

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: An open-source release of Maxent. Ecography (Cop.) 2017;40:887–893. doi: 10.1111/ecog.03049. DOI

Warren DL, Seifert S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 2011;21:335–342. PubMed

Elith J, et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI

Warren DL, Glor RE, Turelli M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography (Cop.) 2010;33:607–611.

Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 2005;28:385–393. doi: 10.1111/j.0906-7590.2005.03957.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace