Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34548532
PubMed Central
PMC8455632
DOI
10.1038/s41598-021-97767-6
PII: 10.1038/s41598-021-97767-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One promising area in understanding the responses of plants to ongoing global climate change is the adaptative effect of polyploidy. This work examines whether there is a coupling between the distribution of cytotypes and their biogeographical niche, and how different niches will affect their potential range. The study uses a range of techniques including flow cytometry, gradient and niche analysis, as well as distribution modelling. In addition, climatic, edaphic and habitat data was used to analyse environmental patterns and potential ranges of cytotypes in the first wide-range study of Festuca amethystina-a mixed-ploidy mountain grass. The populations were found to be ploidy homogeneous and demonstrate a parapatric pattern of cytotype distribution. Potential contact zones have been identified. The tetraploids have a geographically broader distribution than diploids; they also tend to occur at lower altitudes and grow in more diverse climates, geological units and habitats. Moreover, tetraploids have a more extensive potential range, being six-fold larger than diploids. Montane pine forests were found to be a focal environment suitable for both cytotypes, which has a central place in the environmental space of the whole species. Our findings present polyploidy as a visible driver of geographical, ecological and adaptive variation within the species.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Nature Ecosystems Protection Institute of Ecology of the Carpathians NASU Lviv Ukraine
Department of Paleoecology Institute of Botany Czech Academy of Sciences Brno Czech Republic
Department of Silviculture Transilvania University of Brasov Brasov Romania
European Regional Centre for Ecohydrology of the Polish Academy of Sciences Lodz Poland
Faculty of Forestry University of Banja Luka Banja Luka Bosnia and Herzegovina
Zobrazit více v PubMed
Otto SP. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B. 2018;285:20182047. doi: 10.1098/rspb.2018.2047. PubMed DOI PMC
Moritz C, Agudo R. The future of species under climate change: Resilience or decline? Science. 2013;341:504–508. doi: 10.1126/science.1237190. PubMed DOI
Parmesan C, Hanley ME. Plants and climate change: Complexities and surprises. Ann. Bot. 2015;116:849–864. doi: 10.1093/aob/mcv169. PubMed DOI PMC
Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 2000;97:7051–7057. doi: 10.1073/pnas.97.13.7051. PubMed DOI PMC
Barker MS, Husband BC, Chris Pires J. Spreading winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 2016;103:1139–1145. doi: 10.3732/ajb.1600272. PubMed DOI
Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. doi: 10.1038/nrg.2017.26. PubMed DOI
Madlung A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb) 2013;110:99–104. doi: 10.1038/hdy.2012.79. PubMed DOI PMC
Soltis DE, Visger CJ, Marchant BD, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016;103:1146–1166. doi: 10.3732/ajb.1500501. PubMed DOI
Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 2011;108:7096–7101. doi: 10.1073/pnas.1016631108. PubMed DOI PMC
Oswald BP, Nuismer SL. Neopolyploidy and diversification in Heucheragrossulariifolia. Evolution. 2011;65:1667–1679. doi: 10.1111/j.1558-5646.2010.01208.x. PubMed DOI PMC
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. 2017 doi: 10.1016/j.tplants.2017.09.011. PubMed DOI
Fowler NL, Levin DA. Critical factors in the establishment of allopolyploids. Am. J. Bot. 2016;103:1236–1251. doi: 10.3732/ajb.1500407. PubMed DOI
Husband BC, Baldwin SJ, Suda J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In: Leitch I, Greilhuber J, Doležel J, Wendel J, editors. Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes. Springer; 2013. pp. 255–276.
Te Beest M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012;109:19–45. doi: 10.1093/aob/mcr277. PubMed DOI PMC
Watanabe K. The cytogeography of the genus Eupatorium (Compositae)—A review. Plant Species Biol. 1986;1:99–116. doi: 10.1111/j.1442-1984.1986.tb00019.x. DOI
Novak SJ, Soltis DE, Soltis PS. Ownbey’s Tragopogons: 40 years later. Am. J. Bot. 1991;78:1586–1600. doi: 10.1002/j.1537-2197.1991.tb11438.x. DOI
Van Dijk P, Bakx-Schotman T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol. Ecol. 1997;6:345–352. doi: 10.1046/j.1365-294X.1997.00199.x. DOI
Martin SL, Husband BC. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 2009;97:913–922. doi: 10.1111/j.1365-2745.2009.01543.x. DOI
Suda, J., Kron, P., Husband, B. C. & Trávníček, P. Flow cytometry and ploidy: Applications in plant systematics, ecology and evolutionary biology. in Flow Cytometry with Plant Cells 103–130 (Wiley, 2007). 10.1002/9783527610921.ch5.
Ramsey J, Ramsey TS. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:1–76. doi: 10.1098/rstb.2013.0352. PubMed DOI PMC
Goldblatt P. Polyploidy in angiosperms: Monocotyledons. In: Lewis WH, editor. Polyploidy. Basic Life Sciences. Springer; 1980. pp. 219–239. PubMed
Levy AA, Feldman M. The impact of polyploidy on grass genome evolution. Plant Physiol. 2002;130:1587–1593. doi: 10.1104/pp.015727. PubMed DOI PMC
Kellogg A. Flowering Plants Monocots Poaceae. Springer; 2015.
Estep MC, et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. 2014;111:15149–15154. doi: 10.1073/pnas.1404177111. PubMed DOI PMC
Minaya M, et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 2017;44:1980–1993. doi: 10.1111/jbi.13012. DOI
Torrecilla P, Catalán P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 2002;27:241–251.
Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot.101, 421–433 (2008). PubMed PMC
Meusel H, Jäger E, Weinert E. Vergleichende Chorologie der Zentral-europäischen Flora. G. Fischer; 1965.
Kiedrzyński M, Zielińska KM, Kiedrzyńska E, Jakubowska-Gabara J. Regional climate and geology affecting habitat availability for a relict plant in a plain landscape: The case of Festucaamethystina L. in Poland. Plant Ecol. Divers. 2015;8:331–341. doi: 10.1080/17550874.2014.904951. DOI
Kiedrzyński M, Zielińska KM, Rewicz A, Kiedrzyńska E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 2017;122:1359–1370. doi: 10.1002/2016JG003629. DOI
Petrova, A. & Kozuharov, S. Citotaxonomicno proucvane na balgarski vidove ot roda Festuca L. in IV Nacionalna Konferencija Po Botanika 1 (ed. Trudova) 16–23 (1987).
Stählin, A. Morphologische und zytologische Untersuchungen an Gramineen. Wiss. Arch. Landwirtschaft., Abt. A, Pflanzenbau 1, 330–398 (1929).
Wittmann, H. & Strobl, W. Beitrag zur Kenntnis von Festuca amethystina L. im Bundesland Salzburg. Florist. Mitt. Salzburg 9, 3–8 (1984).
La Sorte FA, Jetz W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B Biol. Sci. 2010;277:3401–3410. doi: 10.1098/rspb.2010.0612. PubMed DOI PMC
Elsen PR, Tingley MW. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change. 2015;5:772–776. doi: 10.1038/nclimate2656. DOI
Šmarda P, Müller J, Vraná J, Kočí K. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae) Biologia. 2005;60:1–6.
Rewicz A, et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ. 2018;2018:e5576. doi: 10.7717/peerj.5576. PubMed DOI PMC
Roleček J, Dřevojan P, Šmarda P. First record of Festucaamethystina L. from the transylvanian basin (Romania) Contrib. Bot. 2019;54:91–97. doi: 10.24193/Contrib.Bot.54.6. DOI
Phillips SJ, Dudík M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecograpy. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI
Segraves KA, Thompson JN, Soltis PS, Soltis DE. Multiple origins of polyploidy and the geographic structure of Heucheragrossulariifolia. Mol. Ecol. 1999;8:253–262. doi: 10.1046/j.1365-294X.1999.00562.x. DOI
Levin, D. A. Minority cytotype exclusion in local plant populations. TAXON vol. 24. https://eurekamag.com/pdf/000/000139096.pdf (1975).
Pils G. Systematics, distribution, and karyology of the Festuca violacea Group (Poaceae) in the Eastern Alps. Plant Syst. Evol. 1980;136:73–124. doi: 10.1007/BF00985314. DOI
Stebbins GL. Chromosomal Evolution in Higher Plants. Addison-Wesley; 1971.
Stutz HC, Sanderson SC. Evolutionary studies in Atriplex: Chromosome races of A. confertifolia (shadscale) Am. J. Bot. 1983;70:1536–1547. doi: 10.1002/j.1537-2197.1983.tb10857.x. DOI
Husband BC, Schemske DW. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae) Am. J. Bot. 1998;85:1688–1694. doi: 10.2307/2446502. PubMed DOI
Hardy OJ, Vanderhoeven S, De Loose M, Meerts P. Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaureajacea) from a contact zone in the Belgian Ardennes. New Phytol. 2000;146:281–290. doi: 10.1046/j.1469-8137.2000.00631.x. PubMed DOI
Gauthier P, Lumaret R, Bédécarrats A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity (Edinb) 1998;80:683–693. doi: 10.1046/j.1365-2540.1998.00334.x. DOI
Schönswetter P, et al. Sympatric diploid and hexaploid cytotypes of Seneciocarniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 2007;120:721–725. doi: 10.1007/s10265-007-0108-x. PubMed DOI
Petit C, Bretagnolle F, Felber F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 1999;14:306–311. doi: 10.1016/S0169-5347(99)01608-0. PubMed DOI
Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae) PLoS One. 2015;10:e0133748. doi: 10.1371/journal.pone.0133748. PubMed DOI PMC
Marchant DB, Soltis DE, Soltis PS. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 2016;212:708–718. doi: 10.1111/nph.14069. PubMed DOI
Arrigo N, et al. Is hybridization driving the evolution of climatic niche in Alyssum montanum. Am. J. Bot. 2016;103:1348–1357. doi: 10.3732/ajb.1500368. PubMed DOI
Laport RG, Minckley RL, Ramsey J. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. Am. J. Bot. 2016;103:1358–1374. doi: 10.3732/ajb.1600105. PubMed DOI
Mosquin T. Evidence for autopolyploidy in Epilobiumangustifolium (Onagraceae) Evolution (N. Y.) 1967;21:713–719. PubMed
Szafer W. The mountain element in the flora of Polish Plain. Rozpr. Wydz. Mat. PAU Ser. 3 Dział B. 1930;69:83–196.
Kiedrzyński M, Zielińska KM, Kiedrzyńska E, Rewicz A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 2017;31:815–827. doi: 10.1007/s10682-017-9913-4. DOI
Babić VP, et al. Temperature and other microclimate conditions in the oak forests on Fruška Gora (Serbia) Therm. Sci. 2015;19:S415–S425. doi: 10.2298/TSCI150430116B. DOI
Jakubowska-Gabara J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio. 1996;124:45–59. doi: 10.1007/BF00045143. DOI
Roleček J. Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method? Preslia. 2007;79:1–21.
Indreica A. Festuca amethystina in the sessile oak forests from upper basin of Olt River. Contrib. Bot. 2007;42:11–18.
Jakubowska-Gabara J. Festuca amethystina L. In: Kaźmierczakowa R, Zarzycki K, Mirek Z, editors. The Polish Red Book of Plants. Pteridophytes and Vascular Plants. Institute of Nature Conservation PAS; 2014. pp. 616–618.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).
Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press; 2014.
Wilke, C. O. Ridgeline Plots in ‘ggplot2’. https://wilkelab.org/ggridges/index.html (2021).
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: An open-source release of Maxent. Ecography (Cop.) 2017;40:887–893. doi: 10.1111/ecog.03049. DOI
Warren DL, Seifert S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 2011;21:335–342. PubMed
Elith J, et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Warren DL, Glor RE, Turelli M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography (Cop.) 2010;33:607–611.
Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 2005;28:385–393. doi: 10.1111/j.0906-7590.2005.03957.x. DOI