Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM058843
NIGMS NIH HHS - United States
R01 GM084065
NIGMS NIH HHS - United States
R56 GM058843
NIGMS NIH HHS - United States
MC_PC_18038
Medical Research Council - United Kingdom
PubMed
34883512
PubMed Central
PMC8682783
DOI
10.1093/nar/gkab1204
PII: 6457957
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny metabolismus MeSH
- chromatografie kapalinová metody MeSH
- guanin analogy a deriváty metabolismus MeSH
- kodon genetika metabolismus MeSH
- nukleosid Q metabolismus MeSH
- pentosyltransferasy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA transferová Tyr genetika metabolismus MeSH
- RNA transferová genetika metabolismus MeSH
- sestřih RNA MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- tyrosin metabolismus MeSH
- živiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aminokyseliny MeSH
- guanin MeSH
- kodon MeSH
- nukleosid Q MeSH
- pentosyltransferasy MeSH
- protozoální proteiny MeSH
- queuine tRNA-ribosyltransferase MeSH Prohlížeč
- queuine MeSH Prohlížeč
- RNA transferová Tyr MeSH
- RNA transferová MeSH
- tyrosin MeSH
Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for 'normal' growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.
Department of Microbiology and The Center for RNA Biology The Ohio State University Columbus OH USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Jackman J.E., Alfonzo J.D.. Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdiscip. Rev. RNA. 2013; 4:35–48. PubMed PMC
Kersten H., Kersten W.. Chapter 2: Biosynthesis and function of queuine and queuosine tRNAs. J. Chromatogr. Libr. 1990; 45:B69–B108.
Gregson J.M., Crain P.F., Edmonds C.G., Gupta R., Hashizume T., Phillipson D.W., Mccloskey J.A.. Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro-4-oxo-7-ß-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximidamide (Archaeosine))*. J. Biol. Chem. 1993; 268:10076–10086. PubMed
Fergus C., Barnes D., Alqasem M.A., Kelly V.P.. The queuine micronutrient: charting a course from microbe to man. Nutrients. 2015; 7:2897. PubMed PMC
Meier F., Suter B., Grosjean H., Keith G., Kubli E.. Queuosine modification of the wobble base in tRNA-His influences ‘ in vivo ’ decoding properties. EMBO J. 1985; 4:823–827. PubMed PMC
Zaborske J.M., Bauer DuMont V.L., Wallace E.W.J., Pan T., Aquadro C.F., Drummond D.A.. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014; 12:e1002015. PubMed PMC
Müller M., Legrand C., Tuorto F., Kelly V.P., Atlasi Y., Lyko F., Ehrenhofer-Murray A.E.. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res. 2019; 47:3711–3727. PubMed PMC
Tuorto F., Legrand C., Cirzi C., Federico G., Liebers R., Müller M., Ehrenhofer-Murray A.E., Dittmar G., Gröne H.-J., Lyko F.. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37:e99777. PubMed PMC
Kulkarni S., Rubio M.A.T., Hegedűsová E., Ross R.L., Limbach P.A., Alfonzo J.D., Paris Z.. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res. 2021; 49:8247–8260. PubMed PMC
Zallot R., Brochier-Armanet C., Gaston K.W., Forouhar F., Limbach P.A., Hunt J.F., de Crécy-Lagard V.. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family. ACS Chem. Biol. 2014; 9:1812–1825. PubMed PMC
Müller M., Hartmann M., Schuster I., Bender S., Thüring K.L., Helm M., Katze J.R., Nellen W., Lyko F., Ehrenhofer-Murray A.E.. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res. 2015; 43:10952–10962. PubMed PMC
Chan C.T.Y., Pang Y.L.J., Deng W., Babu I.R., Dyavaiah M., Begley T.J., Dedon P.C.. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 2012; 3:937. PubMed PMC
Endres L., Dedon P.C., Begley T.J.. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 2015; 12:603–614. PubMed PMC
Huber S., Leonardi A., Dedon P., Begley T., Huber S.M., Leonardi A., Dedon P.C., Begley T.J.. The versatile roles of the tRNA epitranscriptome during cellular responses to toxic exposures and environmental stress. Toxics. 2019; 7:17. PubMed PMC
Chan C., Pham P., Dedon P.C., Begley T.J.. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol. 2018; 19:228. PubMed PMC
Dedon P.C., Begley T.J.. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem. Res. Toxicol. 2014; 27:330–337. PubMed PMC
Coustou V., Biran M., Breton M., Guegan F., Rivière L., Plazolles N., Nolan D., Barrett M.P., Franconi J.M., Bringaud F.. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J. Biol. Chem. 2008; 283:16343–16354. PubMed
Bringaud F., Rivière L., Coustou V.. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006; 149:1–9. PubMed
Lopes R.R.S., Silveira G., de O., Eitler R., Vidal R.S., Kessler A., Hinger S., Paris Z., Alfonzo J.D., Polycarpo C.. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNA Tyr. RNA. 2016; 22:1190–1199. PubMed PMC
Kessler A.C., Kulkarni S.S., Paulines M.J., Rubio M.A.T., Limbach P.A., Paris Z., Alfonzo J.D.. Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biol. 2018; 15:528–536. PubMed PMC
Wirtz E., Leal S., Ochatt C., Cross G.A.M.. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 1999; 99:89–101. PubMed
Hirumi H., Hirumi K.. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989; 75:985–989. PubMed
Chomczynski P. Single-step method of RNA isolation by acid guanidinium extraction. Anal. Biochem. 1987; 162:156–159. PubMed
Hannah R., Sherf B.A., Navarro S.L., Hannah R.R., Wood K. V. Dual-luciferase TM reporter assay: an advanced co-reporter technology integrating firefly and renilla luciferase assays. Promega Notes Magazine. 1996; 57:2.
Xu H., Esberg A., Byström A.S.. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res. 2015; 43:9489–9499. PubMed PMC
Shaheen H.H., Hopper A.K.. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:11290–11295. PubMed PMC
Igloi G.L., Kössel H.. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 1985; 13:6881–6898. PubMed PMC
Kořený L., Oborník M., Lukeš J.. Make it, take it, or leave it: heme metabolism of arasites. PLoS Pathog. 2013; 9:e1003088. PubMed PMC
Rakovich T., Boland C., Bernstein I., Chikwana V.M., Iwata-Reuyl D., Kelly V.P.. Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J. Biol. Chem. 2011; 286:19354–19363. PubMed PMC
Lamour N., Rivière L., Coustou V., Coombs G.H., Barrett M.P., Bringaud F.. Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J. Biol. Chem. 2005; 280:11902–11910. PubMed
Marchese L., Nascimento J.D.F., Damasceno F.S., Bringaud F., Michels P.A.M., Silber A.M.. The uptake and metabolism of amino acids, and their unique role in the biology of pathogenic trypanosomatids. Pathogens. 2018; 7:36. PubMed PMC
Hegedűsová E., Kulkarni S., Burgman B., Alfonzo J.D., Paris Z.. The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei. Nucleic Acids Res. 2019; 47:8620–8631. PubMed PMC
Whitney M.L., Hurto R.L., Shaheen H.H., Hopper A.K.. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell. 2007; 18:2678–2688. PubMed PMC
Huang H.-Y., Hopper A.. Multiple layers of stress-induced regulation in tRNA biology. Life. 2016; 6:16. PubMed PMC
Bernhardt D., Darnell J.E.. tRNA synthesis in hela cells: a precursor to tRNA and the effects of methionine starvation on tRNA synthesis. J. Mol. Biol. 1969; 42:43–56. PubMed
Damon J.R., Pincus D., Ploegh H.L.. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol. Biol. Cell. 2015; 26:270–282. PubMed PMC
Gupta R., Walvekar A.S., Liang S., Rashida Z., Shah P., Laxman S.. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. Elife. 2019; 8:e44795. PubMed PMC
Chen Y.C., Kelly V.P., Stachura S. V, Garcia G.A. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA. 2010; 16:958–968. PubMed PMC