Morphology and metal binding characteristics of a natural polymer-kondagogu (Cochlospermum gossypium) gum
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23860274
PubMed Central
PMC6270376
DOI
10.3390/molecules18078264
PII: molecules18078264
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- biodegradace MeSH
- biopolymery chemie MeSH
- Bixaceae chemie MeSH
- iontová výměna MeSH
- koloidy chemie MeSH
- komplexní sloučeniny chemie MeSH
- nanogely MeSH
- polyethylenglykoly chemie MeSH
- polyethylenimin chemie MeSH
- rostlinné extrakty chemie MeSH
- těžké kovy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopolymery MeSH
- koloidy MeSH
- komplexní sloučeniny MeSH
- nanogely MeSH
- polyethylene glycol polyethyleneimine nanogel MeSH Prohlížeč
- polyethylenglykoly MeSH
- polyethylenimin MeSH
- rostlinné extrakty MeSH
- těžké kovy MeSH
Kondagogu (Cochlospermum gossypium) gum (KG), a natural tree exudate, was investigated for its morphological, adsorption and metal interaction behavior with various toxic heavy metals (Pb, Cd, Ni, Cr and Fe). SEM, AFM and TEM techniques were used to study the morphological changes occurring after metal adsorption onto the biopolymer structure. The degree of biosorption of metals on KG biopolymer surfaces was assessed by small-angle X-ray scattering analysis. EDXA spectrum revealed that the ion-exchange mechanism plays a major role in the binding process between KG and metal ions. The higher electron density observed in the KG-Cd complex suggests that Cd is strongly bound to KG compared to the other metals. This work provides a potential platform for developing a hydrocolloid-based nanogel for bioremediation of environmental contaminants.
Zobrazit více v PubMed
BeMiller J.N., Salamone J.C. Polymeric Materials Encyclopedia. CRC Press; Boca Raton, FL, USA: 1996.
Cottrell I.L., Baird J.K., Mark H.F., Other D.F., Berger O.C.G., Seaborg G.T. Encyclopedia of Kirk-Othmer’s Chemical Technology. Wiley Interscience; New York, NY, USA: 1980.
Verbeken D., Dierchx S., Dewettinck K. Exudate gums: Occurrence, production, and application. Appl. Microbiol. Biotechnol. 2003;63:10–21. doi: 10.1007/s00253-003-1354-z. PubMed DOI
Janaki B., Sashidhar R.B. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): A potential food additive. Food Chem. 1998;61:231–236. doi: 10.1016/S0308-8146(97)00089-7. DOI
Janaki B., Sashidhar R.B. Sub-chronic (90-day) Toxicity study in rats fed gum kondagogu (Cochlospermum gossypium) Food Chem. Toxicol. 2000;38:523–534. doi: 10.1016/S0278-6915(00)00037-5. PubMed DOI
Vinod V.T.P., Sashidhar R.B., Suresh K.I., Rama Rao B., Vijaya Saradhi U.V.R., Prabhakar Rao T. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899–915. doi: 10.1016/j.foodhyd.2007.05.006. DOI
Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A Tree gum from India. J. Agric. Food Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI
Vinod V.T.P., Sashidhar R.B. Solution and conformational properties of gum kondagogu (Cochlospermum gossypium)–A natural product with immense potential as a food additive. Food Chem. 2009;116:686–692. doi: 10.1016/j.foodchem.2009.03.009. DOI
Vinod V.T.P., Sashidhar R.B., Sreedhar B., Rama Rao B., Nageswara Rao T., Johny T.A. Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohyd. Polym. 2009;78:894–901. doi: 10.1016/j.carbpol.2009.07.025. DOI
Vinod V.T.P., Sashidhar R.B., Sukumar A.A. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surf. B. 2010;75:490–495. doi: 10.1016/j.colsurfb.2009.09.023. PubMed DOI
Vinod V.T.P., Sashidhar R.B., Sreedhar B. Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J. Hazard. Mat. 2010;178:851–860. doi: 10.1016/j.jhazmat.2010.02.016. PubMed DOI
Naidu V.G.M., Madhusudhana K., Sashidhar R.B., Ramakrishna S., Khar V., Ahmed F.J., Diwan P.V. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohyd. Polym. 2009;76:464–471. doi: 10.1016/j.carbpol.2008.11.010. DOI
Naidu V.G.M., Ramakrishna S., Palaniappan S., Sashidhar R.B., Khar R.K., Diwan P.V. Emulsifying properties of gum kondagogu (Cochlospermum gossypium), a natural biopolymer. J. Sci. Food Agric. 2010;89:1271–1276.
Rivas B.L., Seguel G.V., Ancatripai C. Polymer–metal complexes: Synthesis, characterization, and properties of poly (maleic acid) metal complexes with Cu(II), Co(II), Ni(II) and Zn(II) Polym. Bull. 2000;44:445–452. doi: 10.1007/s002890070064. DOI
Trimukhe K.D., Varma A.J. Complexation of heavy metals by cross-linked chitin and its deacetylated derivatives. Carbohyd. Polym. 2008;71:66–73. doi: 10.1016/j.carbpol.2007.05.016. DOI
Lazaro N., Sevilla A.L., Morales S., Marques A.M. Heavy metal biosorption by gellan gum gel beads. Water Res. 2003;37:2118–2126. doi: 10.1016/S0043-1354(02)00575-4. PubMed DOI
Vinod V.T.P., Sashidhar R.B., Sivaprasad N., Sarma U.V.M., Satyanarayana N., Kumaresan R., Nagaeswara Rao T., Raviprasad P. Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): A natural hydrocolloid. Desalination. 2011;272:270–277. doi: 10.1016/j.desal.2011.01.027. DOI
Gok C., Aytas S. Biosorption of uranium (VI) from aqueous solution using calcium alginate beads. J. Hazard. Mater. 2009;168:369–375. doi: 10.1016/j.jhazmat.2009.02.063. PubMed DOI
Utgikar V., Chen B.Y., Tabak H.H., Bishop D.F., Govind R. Treatment of acid mine drainage, I: Equilibrium biosorption of zinc and copper on non-viable activated sludge. Int. Biodeterior. Biodegrad. 2000;46:19–28. doi: 10.1016/S0964-8305(00)00053-6. DOI
Ikeda S., Funami T., Zhang G. Visualizing surface-active hydrocolloids by atomic force microscopy. Carbohydr. Polym. 2005;62:192–196. doi: 10.1016/j.carbpol.2005.07.020. DOI
Zhou D., Zhang L., Guo S. Mechanisms of lead biosorption on cellulose/chitin beads. Water Res. 2005;39:3755–3762. doi: 10.1016/j.watres.2005.06.033. PubMed DOI
Glatter O. Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method. J. Appl. Crystl. 1980;13:7–11. doi: 10.1107/S0021889880011429. DOI
Glatter O., Kratky G. Small Angle X-ray Scattering. Academic Press Inc; London, UK: 1982.
Glatter O., Hainisch B. Improvements in real-space deconvolution of small-angle scattering data. J. Appl. Crystallogr. 1984;17:435–441. doi: 10.1107/S0021889884011894. DOI
Glatter O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 1972;10:415–421. doi: 10.1107/S0021889877013879. DOI
Tao F., Biao G.Z., Yu J.Z., Ning Z.H. Isolation and charactrization of an acidic polysaccharide from Mesona Blumes gum. Carbohydr. Polym. 2008;71:159–169. doi: 10.1016/j.carbpol.2007.05.017. DOI