Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
- MeSH
- HeLa Cells MeSH
- Humans MeSH
- Ribonucleoprotein, U4-U6 Small Nuclear metabolism genetics MeSH
- Mutation * MeSH
- Eye Proteins genetics metabolism MeSH
- RNA Precursors * metabolism genetics MeSH
- RNA-Binding Proteins metabolism genetics MeSH
- Retinal Pigment Epithelium metabolism pathology MeSH
- Retinitis Pigmentosa * genetics metabolism pathology MeSH
- Ribonucleoproteins, Small Nuclear metabolism genetics MeSH
- RNA, Small Nuclear genetics metabolism MeSH
- RNA Splicing * genetics MeSH
- Spliceosomes metabolism genetics MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during the S phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S phase. Moreover, its amino-terminal region binds FLASH, an RDH-specific 3'-end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the carboxy-terminal domain of RNA polymerase II (RNAPII), which is initiated when RNAPII reaches the middle of RDH genes and is required for further RNAPII elongation and 3'-end processing. CDK11 depletion leads to decreased number of cells in S phase, likely owing to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for the growth of many cancers.
- MeSH
- Chromatin genetics metabolism MeSH
- Cyclin-Dependent Kinases genetics metabolism MeSH
- Phosphorylation MeSH
- Transcription, Genetic * MeSH
- Histones genetics metabolism MeSH
- Humans MeSH
- Apoptosis Regulatory Proteins genetics metabolism MeSH
- Calcium-Binding Proteins genetics metabolism MeSH
- Gene Expression Regulation MeSH
- DNA Replication MeSH
- RNA genetics metabolism MeSH
- S Phase MeSH
- Serine metabolism MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
RNA-binding proteins (RBPs) are critical to posttranscriptional gene regulation. Therefore, characterization of the RNA molecules bound by RBPs in vivo represent a key step in elucidating their function. The recently developed iCLIP technique allows single nucleotide resolution of the RNA binding footprints of RBPs. We present the iCLIP technique modified for its application to Trypanosoma brucei and most likely other kinetoplastid flagellates. By using the immuno- or affinity purification approach, it was successfully applied to the analysis of several RBPs. Furthermore, we also provide a detailed description of the iCLIP/iCLAP protocol that shall be particularly suitable for the studies of trypanosome RBPs.
- MeSH
- Immunoprecipitation methods MeSH
- Nucleotides genetics metabolism MeSH
- Parasitology methods MeSH
- RNA-Binding Proteins analysis genetics metabolism MeSH
- Protozoan Proteins analysis genetics metabolism MeSH
- RNA, Protozoan genetics metabolism MeSH
- RNA genetics metabolism MeSH
- Trypanosoma brucei brucei genetics MeSH
- Ultraviolet Rays MeSH
- Protein Binding genetics radiation effects MeSH
- Binding Sites genetics MeSH
- Single Molecule Imaging methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
- MeSH
- HeLa Cells MeSH
- Introns * MeSH
- Humans MeSH
- RNA Splice Sites * MeSH
- Pyrimidines analysis MeSH
- RNA, Long Noncoding metabolism MeSH
- Serine-Arginine Splicing Factors metabolism MeSH
- RNA Splicing * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
MRP1/2 is a heteromeric protein complex that functions in the trypanosomatid mitochondrion as part of the RNA editing machinery, which facilitates multiple targeted insertions and deletions of uridines. MRP1/2 was shown to interact with MRB8170, which initiates RNA editing by marking pre-edited mRNAs, while TbRGG2 is required for its efficient progression on pan-edited mRNAs. Both MRP1/2 and TbRGG2 are capable of modulating RNA-RNA interactions in vitro. As determined by using iCLIP and RIP-qPCR, RNAs bound to MRP1/2 are characterized and compared with those associated with MRB8170 and TbRGG2. We provide evidence that MRP1 and MRB8170 have correlated binding and similar RNA crosslinking peak profiles over minimally and never-edited mRNAs. Our results suggest that MRP1 assists MRB8170 in RNA editing on minimally edited mRNAs.
- MeSH
- RNA Editing MeSH
- RNA, Messenger genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- RNA-Binding Proteins metabolism MeSH
- Protozoan Proteins genetics metabolism MeSH
- RNA, Mitochondrial genetics metabolism MeSH
- Trypanosoma genetics metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH