• This record comes from PubMed

In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies

. 2011 Feb 15 ; 22 (4) : 513-23. [epub] 20101222

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The U4/U6·U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) is an essential pre-mRNA splicing factor, which is assembled in a stepwise manner before each round of splicing. It was previously shown that the tri-snRNP is formed in Cajal bodies (CBs), but little is known about the dynamics of this process. Here we created a mathematical model of tri-snRNP assembly in CBs and used it to fit kinetics of individual snRNPs monitored by fluorescence recovery after photobleaching. A global fitting of all kinetic data determined key reaction constants of tri-snRNP assembly. Our model predicts that the rates of di-snRNP and tri-snRNP assemblies are similar and that ∼230 tri-snRNPs are assembled in one CB per minute. Our analysis further indicates that tri-snRNP assembly is approximately 10-fold faster in CBs than in the surrounding nucleoplasm, which is fully consistent with the importance of CBs for snRNP formation in rapidly developing biological systems. Finally, the model predicted binding between SART3 and a CB component. We tested this prediction by Förster resonance energy transfer and revealed an interaction between SART3 and coilin in CBs.

See more in PubMed

Achsel T, Brahms H, Kastner B, Bachi A, Wilm M, Luhrmann R. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999;18:5789–5802. PubMed PMC

Ackers GK, Johnson ML, Mills FC, Halvorson HR, Shapiro S. The linkage between oxygenation and subunit dissociation in human hemoglobin. Consequences for the analysis of oxygenation curves. Biochemistry. 1975;14:5128–5134. PubMed

Almeida F, Saffrich R, Ansorge W, Carmo-Fonseca M. Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J Cell Biol. 1998;142:899–912. PubMed PMC

Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med. 1991;173:1407–1419. PubMed PMC

Bednarkiewicz A, Whelan MP. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator. J Biomed Opt. 2008;13:041316. PubMed

Beechem JM, Knutson JR, Ross JBA, Turner BW, Brand L. Global resolution of heterogeneous decay by phase modulation fluorometry–mixtures and proteins. Biochemistry. 1983;22:6054–6058.

Bell M, Schreiner S, Damianov A, Reddy R, Bindereif A. p110, a novel human U6 snRNP protein and U4/U6 snRNP recycling factor. EMBO J. 2002;21:2724–2735. PubMed PMC

Berretta J, Morillon A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 2009;10:973–982. PubMed PMC

Bevington PR, Robinson DK. Data Reduction and Error Analysis for the Physical Sciences, New York: McGraw-Hill; 2002.

Boo BH, Kang D. Global and target analysis of time-resolved fluorescence spectra of di-9H-fluoren-9-yldimethylsilane: dynamics and energetics for intramolecular excimer formation. J Phys Chem A. 2005;109:4280–4284. PubMed

Brandhorst BP, McConkey EH. Stability of nuclear RNA in mammalian cells. J Mol Biol 85. 1974:451–463. PubMed

Carmo-Fonseca M. New clues to the function of the Cajal body. EMBO Rep. 2002;3:726–727. PubMed PMC

Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol. 1992;117:1–14. PubMed PMC

Cioce M, Lamond AI. Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol. 2005;21:105–131. PubMed

Consler TG, Jennewein MJ, Cai GZ, Lee JC. Energetics of allosteric regulation in muscle pyruvate kinase. Biochemistry. 1992;31:7870–7878. PubMed

Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21:2746–2756. PubMed PMC

Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH. In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol. 2007;14:796–806. PubMed PMC

De La Torre JG, Bloomfield VA. Hydrodynamic properties of macromolecular complexes. I. Translation. Biopolymers. 1977;16:1747–1763. PubMed

Draber P, Draberova E, Linhartova I, Viklicky V. Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J Cell Sci. 1989;92(Pt 3):519–528. PubMed

Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T. In vivo kinetics of Cajal body components. J Cell Biol. 2004;164:831–842. PubMed PMC

Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T. A kinetic framework for a mammalian RNA polymerase in vivo. Science. 2002;298:1623–1626. PubMed

Eisenfeld J, Ford CC. A systems-theory approach to the analysis of multiexponential fluorescence decay. Biophys J. 1979;26:73–83. PubMed PMC

Gall JG. Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol. 2000;16:273–300. PubMed

Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell. 1999;10:4385–4402. PubMed PMC

Ghetti A, Company M, Abelson J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA. 1995;1:132–145. PubMed PMC

Gorski SA, Snyder SK, John S, Grummt I, Misteli T. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell. 2008;30:486–497. PubMed PMC

Handwerger KE, Murphy C, Gall JG. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J Cell Biol. 2003;160:495–504. PubMed PMC

Hebert MD, Matera AG. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell. 2000;11:4159–4171. PubMed PMC

Herman P, Lee JC. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 1. calorimetric study. Biochemistry. 2009a;48:9448–9455. PubMed PMC

Herman P, Lee JC. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 2. Fluorescence study. Biochemistry. 2009b;48:9456–9465. PubMed PMC

Herman P, Lee JC. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 3. Mechanism. Biochemistry. 2009c;48:9466–9470. PubMed PMC

Herman P, Lee JC. The advantage of global fitting of data involving complex linked reactions. In: Allostery: Methods and Protocols. In: Fenton AW, editor. New York: Springer; in press. PubMed

Huranova M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol. 2010;191:75–86. PubMed PMC

Ionescu RM, Eftink MR. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Biochemistry. 1997;36:1129–1140. PubMed

Jacques JA. Compartmental Analysis in Biology and Medicine, Ann Arbor: MI:BioMedware; 1996.

Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 2003;22:1878–1888. PubMed PMC

Jimenez-Garcia LF, Spector DL. In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell. 1993;73:47–59. PubMed

Johnson ML. Use of least-squares techniques in biochemistry (reprinted from Analytical-Biochemistry, Vol 206, 1992). Numerical Comput Methods Pt B. 1994;240:1–22.

Johnson ML, Correia JJ, Yphantis DA, Halvorson HR. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981;36:575–588. PubMed PMC

Kaiser TE, Intine RV, Dundr M. De novo formation of a subnuclear body. Science. 2008;322:1713–1717. PubMed

Kiss AM, Jady BE, Darzacq X, Verheggen C, Bertrand E, Kiss T. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res. 2002;30:4643–4649. PubMed PMC

Kiss T. Biogenesis of small nuclear RNPs. J Cell Sci. 2004;117:5949–5951. PubMed

Klingauf M, Stanek D, Neugebauer KM. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell. 2006;17:4972–4981. PubMed PMC

Knutson JR, Beechem JM, Brand L. Simultaneous analysis of multiple fluorescence decay curves—a global approach. Chem Phys Lett. 1983;102:501–507.

Lafarga M, Berciano MT, Garcia-Segura LM, Andres MA, Carmo-Fonseca M. Acute osmotic/stress stimuli induce a transient decrease of transcriptional activity in the neurosecretory neurons of supraoptic nuclei. J Neurocytol. 1998;27:205–217. PubMed

Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. 2003;4:605–612. PubMed

Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonne R, Luhrmann R. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell. 2006;17:3221–3231. PubMed PMC

Listerman I, Bledau AS, Grishina I, Neugebauer KM. Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet. 2007;3:e212. PubMed PMC

Liu S, Rauhut R, Vornlocher HP, Luhrmann R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA. 2006;12:1418–1430. PubMed PMC

Makarova OV, Makarov EM, Liu S, Vornlocher HP, Luhrmann R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002;21:1148–1157. PubMed PMC

Matera AG. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 1999;9:302–309. PubMed

Matera AG, Shpargel KB. Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol. 2006;18:317–324. PubMed

Mayes AE, Verdone L, Legrain P, Beggs JD. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 1999;18:4321–4331. PubMed PMC

Morris GE. The Cajal body. Biochim Biophys Acta. 2008;1783:2108–2115. PubMed

Nesic D, Tanackovic G, Kramer A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J Cell Sci. 2004;117:4423–4433. PubMed

Ogg SC, Lamond AI. Cajal bodies and coilin—moving towards function. J Cell Biol. 2002;159:17–21. PubMed PMC

Platani M, Goldberg I, Lamond AI, Swedlow JR. Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol. 2002;4:502–508. PubMed

Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol. 2000;151:1561–1574. PubMed PMC

Poser I, et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. 2008;5:409–415. PubMed PMC

Raghunathan PL, Guthrie C. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science. 1998;279:857–860. PubMed

Raska I, Andrade LE, Ochs RL, Chan EK, Chang CM, Roos G, Tan EM. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res. 1991;195:27–37. PubMed

Rino J, Carvalho T, Braga J, Desterro JM, Luhrmann R, Carmo-Fonseca M. A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol. 2007;3:2019–2031. PubMed PMC

Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 2004;23:3000–3009. PubMed PMC

Schneider C, Will CL, Makarova OV, Makarov EM, Luhrmann R. Human U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions. Mol Cell Biol. 2002;22:3219–3229. PubMed PMC

Schumperli D, Pillai RS. The special Sm core structure of the U7 snRNP: far-reaching significance of a small nuclear ribonucleoprotein. Cell Mol Life Sci. 2004;61:2560–2570. PubMed PMC

Sleeman JE, Ajuh P, Lamond AI. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci. 2001;114:4407–4419. PubMed

Sleeman JE, Lamond AI. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. 1999;9:1065–1074. PubMed

Sleeman JE, Trinkle-Mulcahy L, Prescott AR, Ogg SC, Lamond AI. Cajal body proteins SMN and coilin show differential dynamic behaviour in vivo. J Cell Sci. 2003;116:2039–2050. PubMed

Stanek D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Biol. 2004;166:1015–1025. PubMed PMC

Stanek D, Neugebauer KM. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma. 2006;115:343–354. PubMed

Stanek D, Pridalova J, Novotny I, Huranova M, Blazikova M, Wen X, Sapra AK, Neugebauer KM. Spliceosomal snRNPs repeatedly cycle through Cajal bodies. Mol Biol Cell. 2008;19:2534–2543. PubMed PMC

Stanek D, Rader SD, Klingauf M, Neugebauer KM. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J Cell Biol. 2003;160:505–516. PubMed PMC

Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus. 2010a;1:13. PubMed PMC

Strzelecka M, Trowitzsch S, Weber G, Luhrmann R, Oates AC, Neugebauer KM. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol. 2010b;17:403–409. PubMed

Ucci JW, Cole JL. Global analysis of non-specific protein-nucleic interactions by sedimentation equilibrium. Biophys Chem. 2004;108:127–140. PubMed PMC

Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–718. PubMed

Walker MP, Tian L, Matera AG. Reduced viability, fertility and fecundity in mice lacking the Cajal body marker protein, coilin. PLoS One. 2009;4:e6171. PubMed PMC

Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001;13:290–301. PubMed

Will CL, Lührmann R. snRNP structure and function. In: Krainer AR, editor. Eukaryotic mRNA Processing. Oxford: IRL Press; 1997. pp. 130–173.

Xu H, Pillai RS, Azzouz TN, Shpargel KB, Kambach C, Hebert MD, Schumperli D, Matera AG. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma. 2005;114:155–166. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Dynamic interaction of spliceosomal snRNPs with coilin explains Cajal body characteristics

. 2025 Aug 04 ; 224 (8) : . [epub] 20250625

Coilin and Cajal bodies

. 2023 Dec ; 14 (1) : 2256036.

TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation

. 2021 Jun 15 ; 12 (1) : 3646. [epub] 20210615

The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation

. 2018 Apr 20 ; 46 (7) : 3774-3790.

Cajal bodies and snRNPs - friends with benefits

. 2017 Jun 03 ; 14 (6) : 671-679. [epub] 20160914

Structural insights into Ca2+-calmodulin regulation of Plectin 1a-integrin β4 interaction in hemidesmosomes

. 2015 Mar 03 ; 23 (3) : 558-570. [epub] 20150219

Probing nucleic acid interactions and pre-mRNA splicing by Förster Resonance Energy Transfer (FRET) microscopy

. 2012 Nov 14 ; 13 (11) : 14929-45. [epub] 20121114

Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins

. 2012 Oct ; 23 (19) : 3776-85. [epub] 20120808

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...