Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18367544
PubMed Central
PMC2397305
DOI
10.1091/mbc.e07-12-1259
PII: E07-12-1259
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- Cajalova tělíska metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- malý jaderný ribonukleoprotein U4-U6 metabolismus MeSH
- malý jaderný ribonukleoprotein U5 metabolismus MeSH
- protein přežití motorických neuronů 1 metabolismus MeSH
- proteiny vázající RNA MeSH
- ribonukleoproteiny malé jaderné metabolismus MeSH
- spliceozomy metabolismus MeSH
- transportní proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- malá interferující RNA MeSH
- malý jaderný ribonukleoprotein U4-U6 MeSH
- malý jaderný ribonukleoprotein U5 MeSH
- protein přežití motorických neuronů 1 MeSH
- proteiny vázající RNA MeSH
- PRPF8 protein, human MeSH Prohlížeč
- ribonukleoproteiny malé jaderné MeSH
- transportní proteiny MeSH
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.
Zobrazit více v PubMed
Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Luhrmann R. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999;18:5789–5802. PubMed PMC
Almeida F., Saffrich R., Ansorge W., Carmo-Fonseca M. Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J. Cell Biol. 1998;142:899–912. PubMed PMC
Arenas J. E., Abelson J. N. Prp 43: an RNA helicase-like factor involved in spliceosome disassembly. Proc. Natl. Acad. Sci. USA. 1997;94:11798–11802. PubMed PMC
Bell M., Schreiner S., Damianov A., Reddy R., Bindereif A. p110, a novel human U6 snRNP protein and U4/U6 snRNP recycling factor. EMBO J. 2002;21:2724–2735. PubMed PMC
Black D. L., Pinto A. L. U5 small nuclear ribonucleoprotein: RNA structure analysis and ATP-dependent interaction with U4/U6. Mol. Cell. Biol. 1989;9:3350–3359. PubMed PMC
Blencowe B. J., Carmo-Fonseca M., Behrens S. E., Luhrmann R., Lamond A. I. Interaction of the human autoantigen p150 with splicing snRNPs. J. Cell Sci. 1993;105:685–697. PubMed
Boon K. L., Auchynnikava T., Edwalds-Gilbert G., Barrass J. D., Droop A. P., Dez C., Beggs J. D. Yeast ntr1/spp382 mediates prp43 function in postspliceosomes. Mol. Cell. Biol. 2006;26:6016–6023. PubMed PMC
Carmo-Fonseca M., Pepperkok R., Carvalho M. T., Lamond A. I. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J. Cell Biol. 1992;117:1–14. PubMed PMC
Carvalho T., Almeida F., Calapez A., Lafarga M., Berciano M. T., Carmo-Fonseca M. The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J. Cell Biol. 1999;147:715–728. PubMed PMC
Chan S. P., Kao D. I., Tsai W. Y., Cheng S. C. The Prp19p-associated complex in spliceosome activation. Science. 2003;302:279–282. PubMed
Chen C. H., Kao D. I., Chan S. P., Kao T. C., Lin J. Y., Cheng S. C. Functional links between the Prp19-associated complex, U4/U6 biogenesis, and spliceosome recycling. RNA. 2006;12:765–774. PubMed PMC
Company M., Arenas J., Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature. 1991;349:487–493. PubMed
Darzacq X., Jady B. E., Verheggen C., Kiss A. M., Bertrand E., Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21:2746–2756. PubMed PMC
Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–1489. PubMed PMC
Dundr M., Hebert M. D., Karpova T. S., Stanek D., Xu H., Shpargel K. B., Meier U. T., Neugebauer K. M., Matera A. G., Misteli T. In vivo kinetics of Cajal body components. J. Cell Biol. 2004;164:831–842. PubMed PMC
Fabrizio P., Laggerbauer B., Lauber J., Lane W. S., Luhrmann R. An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J. 1997;16:4092–4106. PubMed PMC
Gerlich D., Beaudouin J., Kalbfuss B., Daigle N., Eils R., Ellenberg J. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell. 2003;112:751–764. PubMed
Ghetti A., Company M., Abelson J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA. 1995;1:132–145. PubMed PMC
Girard C., Neel H., Bertrand E., Bordonne R. Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation. Nucleic Acids Res. 2006;34:2925–2932. PubMed PMC
Jady B. E., Darzacq X., Tucker K. E., Matera A. G., Bertrand E., Kiss T. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 2003;22:1878–1888. PubMed PMC
Jurica M. S., Moore M. J. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell. 2003;12:5–14. PubMed
Kambach C., Walke S., Young R., Avis J. M., de la Fortelle E., Raker V. A., Luhrmann R., Li J., Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell. 1999;96:375–387. PubMed
Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109:145–148. PubMed
Kiss T. Biogenesis of small nuclear RNPs. J. Cell Sci. 2004;117:5949–5951. PubMed
Klingauf M., Stanek D., Neugebauer K. M. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol. Biol. Cell. 2006;17:4972–4981. PubMed PMC
Lauber J., Plessel G., Prehn S., Will C. L., Fabrizio P., Groning K., Lane W. S., Luhrmann R. The human U4/U6 snRNP contains 60 and 90kD proteins that are structurally homologous to the yeast splicing factors Prp4p and Prp3p. RNA. 1997;3:926–941. PubMed PMC
Lemm I., Girard C., Kuhn A. N., Watkins N. J., Schneider M., Bordonne R., Luhrmann R. Ongoing U snRNP Biogenesis Is Required for the Integrity of Cajal Bodies. Mol. Biol. Cell. 2006;17:3221–3231. PubMed PMC
Listerman I., Bledau A. S., Grishina I., Neugebauer K. M. Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet. 2007;3:e212. PubMed PMC
Listerman I., Sapra A. K., Neugebauer K. M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 2006;13:815–822. PubMed
Liu J. L., Gall J. G. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. USA. 2007;104:11655–11659. PubMed PMC
Makarov E. M., Makarova O. V., Urlaub H., Gentzel M., Will C. L., Wilm M., Luhrmann R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 2002;298:2205–2208. PubMed
Makarova O. V., Makarov E. M., Liu S., Vornlocher H. P., Luhrmann R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6center dotU5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002;21:1148–1157. PubMed PMC
Martin A., Schneider S., Schwer B. Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. J. Biol. Chem. 2002;277:17743–17750. PubMed
Matera A. G., Shpargel K. B. Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr. Opin. Cell Biol. 2006;18:317–324. PubMed
Mayes A. E., Verdone L., Legrain P., Beggs J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 1999;18:4321–4331. PubMed PMC
Meister G., Eggert C., Fischer U. SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 2002;12:472–478. PubMed
Narayanan U., Achsel T., Luhrmann R., Matera A. G. Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein. Mol. Cell. 2004;16:223–234. PubMed
Narayanan U., Ospina J. K., Frey M. R., Hebert M. D., Matera A. G. SMN, the spinal muscular atrophy protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum. Mol. Genet. 2002;11:1785–1795. PubMed PMC
Nesic D., Tanackovic G., Kramer A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J. Cell Sci. 2004;117:4423–4433. PubMed
Neugebauer K. M. On the importance of being co-transcriptional. J. Cell Sci. 2002;115:3865–3871. PubMed
Ohno M., Shimura Y. A human RNA helicase-like protein, HRH1, facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome. Genes Dev. 1996;10:997–1007. PubMed
Patterson G. H., Lippincott-Schwartz J. Selective photolabeling of proteins using photoactivatable GFP. Methods. 2004;32:445–450. PubMed
Paushkin S., Gubitz A. K., Massenet S., Dreyfuss G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell Biol. 2002;14:305–312. PubMed
Raghunathan P. L., Guthrie C. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science. 1998;279:857–860. PubMed
Raker V. A., Plessel G., Luhrmann R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 1996;15:2256–2269. PubMed PMC
Schaffert N., Hossbach M., Heintzmann R., Achsel T., Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 2004;23:3000–3009. PubMed PMC
Shpargel K. B., Matera A. G. Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc. Natl. Acad. Sci. USA. 2005;102:17372–17377. PubMed PMC
Shpargel K. B., Ospina J. K., Tucker K. E., Matera A. G., Hebert M. D. Control of Cajal body number is mediated by the coilin C-terminus. J. Cell Sci. 2003;116:303–312. PubMed
Sleeman J. A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. J. Cell Sci. 2007;120:1540–1550. PubMed
Sleeman J. E., Ajuh P., Lamond A. I. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J. Cell Sci. 2001;114:4407–4419. PubMed
Sleeman J. E., Lamond A. I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 1999;9:1065–1074. PubMed
Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998;92:315–326. PubMed
Stanek D., Neugebauer K. M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 2004;166:1015–1025. PubMed PMC
Stanek D., Neugebauer K. M. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma. 2006;115:343–354. PubMed
Stanek D., Rader S. D., Klingauf M., Neugebauer K. M. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J. Cell Biol. 2003;160:505–516. PubMed PMC
Tanaka N., Aronova A., Schwer B. Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev. 2007;21:2312–2325. PubMed PMC
Terns M. P., Terns R. M. Macromolecular complexes: SMN–the master assembler. Curr. Biol. 2001;11:R862–R864. PubMed
Terskikh A., et al. “Fluorescent timer”: protein that changes color with time. Science. 2000;290:1585–1588. PubMed
Tsai R. T., Fu R. H., Yeh F. L., Tseng C. K., Lin Y. C., Huang Y. H., Cheng S. C. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev. 2005;19:2991–3003. PubMed PMC
Tsai R. T., Tseng C. K., Lee P. J., Chen H. C., Fu R. H., Chang K. J., Yeh F. L., Cheng S. C. Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. Mol. Cell. Biol. 2007;27:8027–8037. PubMed PMC
Tycowski K. T., Kolev N. G., Conrad N. K., Fok V., Steitz J. A. The ever-growing world of small nuclear ribonucleoproteins. In: Gesteland R. F., Cech T. R., Atkins J. F., editors. The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2006. pp. 327–368.
Verdone L., Galardi S., Page D., Beggs J. D. Lsm proteins promote regeneration of pre-mRNA splicing activity. Curr. Biol. 2004;14:1487–1491. PubMed
Wang C., Meier U. T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 2004;23:1857–1867. PubMed PMC
Wen X., Lei Y. P., Zhou Y. L., Okamoto C. T., Snead M. L., Paine M. L. Structural organization and cellular localization of tuftelin-interacting protein 11 (TFIP11) Cell Mol. Life Sci. 2005;62:1038–1046. PubMed PMC
Will C. L., Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 2001;13:290–301. PubMed
Will C. L., Luhrmann R. Spliceosome structure and function. In: Gesteland R. F., Cech T. R., Atkins J. F., editors. The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2006. pp. 369–400.
Yu Y. T., Sharl E. C., Smith C. M., Steitz J. A. The growing world of small nuclear ribonucleoproteins. In: Gesteland C., Atkins, editors. The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999. pp. 487–524.
Zhang Y., Muyrers J. P., Testa G., Stewart A. F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 2000;18:1314–1317. PubMed
TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation
Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones
Cajal bodies and snRNPs - friends with benefits
Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing
In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies