Probing nucleic acid interactions and pre-mRNA splicing by Förster Resonance Energy Transfer (FRET) microscopy

. 2012 Nov 14 ; 13 (11) : 14929-45. [epub] 20121114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23203103

Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental approaches recently used for either in vitro or in vivo studies. Next, we summarize how FRET contributed to the understanding of pre-mRNA splicing and spliceosome assembly.

Zobrazit více v PubMed

Förster T. Energiewanderung und Fluoreszenz. Naturwissenschaften. 1946;33:166–175.

Sapsford K.E., Berti L., Medintz I.L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. Engl. 2006;45:4562–4589. PubMed

Gonçalves M.S.T. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009;109:190–212. PubMed

Stepanenko O.V., Shcherbakova D.M., Kuznetsova I.M., Turoverov K.K., Verkhusha V.V. Modern fluorescent proteins: From chromophore formation to novel intracellular applications. Biotechniques. 2011;51:313–327. PubMed PMC

Jares-Erijman E.A., Jovin T.M. FRET imaging. Nat. Biotechnol. 2003;21:1387–1395. PubMed

Galbraith C.G., Galbraith J.A. Super-resolution microscopy at a glance. J. Cell Sci. 2011;124:1607–1611. PubMed PMC

Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010;190:165–175. PubMed PMC

Grecco H.E., Verveer P.J. FRET in cell biology: Still shining in the age of super-resolution? Chemphyschem. 2011;12:484–490. PubMed

Piston D.W., Kremers G.-J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci. 2007;32:407–414. PubMed

Pietraszewska-Bogiel A., Gadella T.W.J. FRET microscopy: From principle to routine technology in cell biology. J. Microsc. 2011;241:111–118. PubMed

Patterson G.H., Piston D.W., Barisas B.G. Förster distances between green fluorescent protein pairs. Anal. Biochem. 2000;284:438–440. PubMed

Berney C., Danuser G. FRET or no FRET: A quantitative comparison. Biophys. J. 2003;84:3992–4010. PubMed PMC

Malkani N., Schmid J.A. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. PLoS One. 2011;6:e18586. PubMed PMC

Nienhaus G.U., Wiedenmann J. Structure, dynamics and optical properties of fluorescent proteins: Perspectives for marker development. Chemphyschem. 2009;10:1369–1379. PubMed

Dickson R.M., Cubitt A.B., Tsien R.Y., Moerner W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997;388:355–358. PubMed

Valentin G., Verheggen C., Piolot T., Neel H., Coppey-Moisan M., Bertrand E. Photoconversion of YFP into a CFP-like species during acceptor photobleaching. Nat. Meth. 2005;2:801. PubMed

Thaler C., Vogel S.S., Ikeda S.R., Chen H. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nat. Meth. 2006;3:491. PubMed

Verrier S.E., Söling H.-D. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nat. Meth. 2006;3:491–492. PubMed

Valentin G., Verheggen C., Piolot T., Neel H., Zimmermann T., Coppey-Moisan M., Bertrand E. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nat. Meth. 2006;3:492–493. PubMed

Kirber M.T., Chen K., Keaney J.F. YFP photoconversion revisited: Confirmation of the CFP-like species. Nat. Meth. 2007;4:767–768. PubMed

Becker W. Fluorescence lifetime imaging—Techniques and applications. J. Microsc. 2012;247:119–136. PubMed

Becker W., Bergmann A., Hink M.A., König K., Benndorf K., Biskup C. Fluorescence lifetime imaging by time-correlated single-photon counting. Micro. Res. Tech. 2004;63:58–66. PubMed

Levitt J.A., Matthews D.R., Ameer-Beg S.M., Suhling K. Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr. Opin. Biotechnol. 2009;20:28–36. PubMed

Van Munster E.B., Gadella T.W.J. Fluorescence Lifetime Imaging Microscopy (FLIM) Adv. Biochem. Eng. Biotechnol. 2005;95:143–175. PubMed

Sun Y., Day R.N., Periasamy A. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 2011;6:1324–1340. PubMed PMC

Ha T., Enderle T., Ogletree D.F., Chemla D.S., Selvin P.R., Weiss S. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA. 1996;93:6264–6268. PubMed PMC

Tinoco I., Gonzalez R.L. Biological mechanisms, one molecule at a time. Genes Dev. 2011;25:1205–1231. PubMed PMC

Roy R., Hohng S., Ha T. A practical guide to single-molecule FRET. Nat. Meth. 2008;5:507–516. PubMed PMC

Tinoco I., Chen G., Qu X. RNA reactions one molecule at a time. Cold Spring Harb. Perspect. Biol. 2010;2:a003624. PubMed PMC

Sakon J.J., Weninger K.R. Detecting the conformation of individual proteins in live cells. Nat. Meth. 2010;7:203–205. PubMed PMC

Cremazy F.G.E., Manders E.M.M., Bastiaens P.I.H., Kramer G., Hager G.L., van Munster E.B., Verschure P.J., Gadella T.J., van Driel R. Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM. Exp. Cell. Res. 2005;309:390–396. PubMed

Lorenz M. Visualizing protein—RNA interactions inside cells by fluorescence resonance energy transfer. RNA. 2009;15:97–103. PubMed PMC

Nagai T., Ibata K., Park E.S., Kubota M., Mikoshiba K., Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002;20:87–90. PubMed

Sapra A.K., Ankö M.-L., Grishina I., Lorenz M., Pabis M., Poser I., Rollins J., Weiland E.-M., Neugebauer K.M. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol. Cell. 2009;34:179–190. PubMed

Meades G., Benson B.K., Grove A., Waldrop G.L. A tale of two functions: Enzymatic activity and translational repression by carboxyltransferase. Nucleic Acids Res. 2010;38:1217–1227. PubMed PMC

Huranová M., Jablonski J.A., Benda A., Hof M., Stanek D., Caputi M. In vivo detection of RNA-binding protein interactions with cognate RNA sequences by fluorescence resonance energy transfer. RNA. 2009;15:2063–2071. PubMed PMC

Endoh T., Funabashi H., Mie M., Kobatake E. Method for detection of specific nucleic acids by recombinant protein with fluorescent resonance energy transfer. Anal. Chem. 2005;77:4308–4314. PubMed

Endoh T., Mie M., Kobatake E. Direct detection of RNA transcription by FRET imaging using fluorescent protein probe. J. Biotechnol. 2008;133:413–417. PubMed

Gerecht P.S.D., Taylor M.A., Port J.D. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol. 2010;11:69. PubMed PMC

Brody E., Abelson J. The “spliceosome”: Yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science. 1985;228:963–967. PubMed

Bindereif A., Green M.R. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J. 1987;6:2415–2424. PubMed PMC

Rino J., Carmo-Fonseca M. The spliceosome: A self-organized macromolecular machine in the nucleus? Trends Cell Biol. 2009;19:375–384. PubMed

Will C.L., Lührmann R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011;3:a003707. PubMed PMC

Abelson J., Blanco M., Ditzler M.A., Fuller F., Aravamudhan P., Wood M., Villa T., Ryan D.E., Pleiss J.A., Maeder C., et al. Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat. Struct. Mol. Biol. 2010;17:504–512. PubMed PMC

Zamore P.D., Patton J.G., Green M.R. Cloning and domain structure of the mammalian splicing factor U2AF. Nature. 1992;355:609–614. PubMed

Merendino L., Guth S., Bilbao D., Martínez C., Valcárcel J. Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature. 1999;402:838–841. PubMed

Chusainow J., Ajuh P.M., Trinkle-Mulcahy L., Sleeman J.E., Ellenberg J., Lamond A.I. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA. 2005;11:1201–1214. PubMed PMC

Rino J., Desterro J.M.P., Pacheco T.R., Gadella T.W.J., Carmo-Fonseca M. Splicing factors SF1 and U2AF associate in extraspliceosomal complexes. Mol. Cell. Biol. 2008;28:3045–3057. PubMed PMC

Matlin A.J., Clark F., Smith C.W.J. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005;6:386–398. PubMed

Long J.C., Caceres J.F. The SR protein family of splicing factors: Master regulators of gene expression. Biochem. J. 2009;417:15–27. PubMed

Ellis J.D., Llères D., Denegri M., Lamond A.I., Cáceres J.F. Spatial mapping of splicing factor complexes involved in exon and intron definition. J. Cell Biol. 2008;181:921–934. PubMed PMC

Girard C., Will C.L., Peng J., Makarov E.M., Kastner B., Lemm I., Urlaub H., Hartmuth K., Lührmann R. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 2012;3:994. PubMed

Nottrott S., Urlaub H., Lührmann R. Hierarchical, clustered protein interactions with U4/U6 snRNA: A biochemical role for U4/U6 proteins. EMBO J. 2002;21:5527–5538. PubMed PMC

WoŸniak A.K., Nottrott S., Kühn-Hölsken E., Schröder G.F., Grubmüller H., Lührmann R., Seidel C.A.M., Oesterhelt F. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA. 2005;11:1545–1554. PubMed PMC

Staněk D., Neugebauer K.M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 2004;166:1015–1025. PubMed PMC

Novotný I., Blažíková M., Staněk D., Herman P., Malinsky J. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol. Biol. Cell. 2011;22:513–23. PubMed PMC

Schaffert N., Hossbach M., Heintzmann R., Achsel T., Lührmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 2004;23:3000–3009. PubMed PMC

Guo Z., Karunatilaka K.S., Rueda D. Single-molecule analysis of protein-free U2–U6 snRNAs. Nat. Struct. Mol. Biol. 2009;16:1154–1159. PubMed PMC

Yuan F., Griffin L., Phelps L., Buschmann V., Weston K., Greenbaum N.L. Use of a novel Förster resonance energy transfer method to identify locations of site-bound metal ions in the U2–U6 snRNA complex. Nucleic Acids Res. 2007;35:2833–2845. PubMed PMC

Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008;40:1413–1415. PubMed

Blanco A.M., Rausell L., Aguado B., Perez-Alonso M., Artero R. A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization. Nucleic Acids Res. 2009;37:e116. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...