Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia lipolytica
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33490049
PubMed Central
PMC7820814
DOI
10.3389/fbioe.2020.593419
Knihovny.cz E-zdroje
- Klíčová slova
- Bombus, Yarrowia lipolytica, fatty alcohol, metabolic engineering, pheromone, reductase,
- Publikační typ
- časopisecké články MeSH
Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.
Zobrazit více v PubMed
Abdel-Mawgoud A. M., Markham K. A., Palmer C. M., Liu N., Stephanopoulos G., Alper H. S. (2018). Metabolic engineering in the host Yarrowia lipolytica. Metab. Eng. 50 192–208. 10.1016/j.ymben.2018.07.016 PubMed DOI
Antony B., Ding B. J., Moto K., Aldosari S. A., Aldawood A. S. (2016). Two fatty acyl reductases involved in moth pheromone biosynthesis. Sci. Rep. 6:29927. 10.1038/srep29927 PubMed DOI PMC
Ayasse M., Jarau S. (2014). Chemical ecology of bumble bees. Ann. Rev. Entomol. 59 299–319. 10.1146/annurev-ento-011613-161949 PubMed DOI
Barth G., Gaillardin C. (1996). “Yarrowia lipolytica,” in Nonconventional Yeasts in Biotechnology, ed. Wolf K., (Berlin: Springer; ), 313–388.
Beopoulos A., Mrozova Z., Thevenieau F., Le Dall M. Z., Hapala I., Papanikolaou S., et al. (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74:24. 10.1128/AEM.01412-08 PubMed DOI PMC
Borodina I., Holkenbrink C., Dam M. I., Löfstedt C. (2018a). Methods for Producing Fatty Alcohols and Derivatives Thereof in Yeast. Patent No WO2018109163 Geneva: World Intellectual Property Organization.
Borodina I., Holkenbrink C., Dam M. I., Löfstedt C., Ding B., Wang H. (2018b). Production of Desaturated Fatty Alcohols and Desaturated Fatty Acyl Acetates in Yeast. Patent No WO2018109167 Geneva: World Intellectual Property Organization.
Buček A., Brabcová J., Vogel H., Prchalová D., Kindl J., Valterová I., et al. (2016). Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. Insect Mol. Biol. 25 295–314. 10.1111/imb.12221 PubMed DOI
Buček A., Vogel H., Matoušková P., Prchalová D., Žáèek P., Vrkoslav V., et al. (2013). The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect biochemistry and molecular biology 43 724–731. 10.1016/j.ibmb.2013.05.003 PubMed DOI
Butenandt A., Beckmann R., Hecker E. (1961). Über den sexuallockstoff des seidenspinners, I. Der biologische test und die isolierung des reinen sexuallockstoffes bombykol. Biol. Chem. 324 71–83. 10.1515/bchm2.1961.324.1.71 PubMed DOI
Cordova L. T., Butler J., Alper H. S. (2019). Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metab. Eng. Commun. 10:e00105 10.1016/j.mec.2019.e00105 PubMed DOI PMC
Dahlin J., Holkenbrink C., Marella E. R., Wang G., Liebal U., Lieven C., et al. (2019). Multi-omics analysis of fatty alcohol production in engineered yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front. Genet. 10:747. 10.3389/fgene.2019.00747 PubMed DOI PMC
Ding B. J., Lager I., Bansal S., Durrett T. P., Stymne S., Löfstedt C. (2016). The yeast ATF1 acetyltransferase efficiently acetylates insect pheromone alcohols: implications for the biological production of moth pheromones. Lipids 51 469–475. 10.1007/s11745-016-4122-4 PubMed DOI PMC
Dulermo R., Brunel F., Dulermo T., Ledesma-Amaro R., Vion J., Trassaert M., et al. (2017). Using a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica. Microb. Cell Fact. 16:31. PubMed PMC
Dulermo T., Lazar Z., Dulermo R., Rakicka M., Haddouche R., Nicaud J.-M. (2015). Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim. Biophys. Acta 1851 1107–1117. 10.1016/j.bbalip.2015.04.007 PubMed DOI
Eirín-López J. M., Rebordinos L., Rooney A. P., Rozas J. (2012). The birth-and-death evolution of multigene families revisited. Genome Dynamics 7 170–196. 10.1159/000337119 PubMed DOI
El-Sayed A. M. (2019). The Pherobase: Database of Pheromones and Semiochemicals. Available online at: http://www.pherobase.com (accessed October 20, 2020).
Fillet S., Gibert J., Suárez B., Lara A., Ronchel C., Adrio J. L. (2015). Fatty alcohols production by oleaginous yeast. J. Indust. Microbiol. Biotechnol. 42 1463–1472. 10.1007/s10295-015-1674-x PubMed DOI PMC
Groenewald M., Boekhout T., Neuvéglise C., Gaillardin C., van Dijck P. W., Wyss M. (2014). Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 40 187–206. 10.3109/1040841X.2013.770386 PubMed DOI
Groot A. T., Dekker T., Heckel D. G. (2016). The genetic basis of pheromone evolution in moths. Annu. Rev. Entomol. 61 99–117. 10.1146/annurev-ento-010715-023638 PubMed DOI
Guo W., Sheng J., Zhao H., Feng X. (2016). Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb. Cell Fact. 15:24. 10.1186/s12934-016-0423-9 PubMed DOI PMC
Hagström ÅK., Wang H. L., Liénard M. A., Lassance J. M., Johansson T., Löfstedt C. (2013). A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microb. Cell Fact. 12:125. 10.1186/1475-2859-12-125 PubMed DOI PMC
Holdsworth J. E., Veenhuis M., Ratledge C. (1988). Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J. Gen. Microbiol. 1988 2907–2915. 10.1099/00221287-134-11-2907 PubMed DOI
Holkenbrink C., Ding B.-J., Wang H.-L., Dam M. I., Petkevicius K., Kildegaard K., et al. (2020). Production of moth sex pheromones for pest control by yeast fermentation. Metab. Eng. 62 312–321. 10.1101/2020.07.15.205047 PubMed DOI
Jurenka R. (2004). Insect pheromone biosynthesis. Top. Curr. Chem. 239 97–132. 10.1007/b95450 PubMed DOI
Koutroumpa F. A., Jacquin-Joly E. (2014). Sex in the night: fatty acid-derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie 107 15–21. 10.1016/j.biochi.2014.07.018 PubMed DOI
Lazar Z., Dulermo T., Neuvéglise C., Crutz-Le Coq A. M., Nicaud J. M. (2014). Hexokinase—A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab. Eng. 26 89–99. 10.1016/j.ymben.2014.09.008 PubMed DOI
Lazar Z., Rossignol T., Verbeke J., Crutz-Le Coq A. M., Nicaud J.-M., Robak M. (2013). Optimized invertase expression and secretion cassette for improving Yarrowia lipolytica growth on sucrose for industrial applications. J. Ind. Microbiol. Biotechnol. 40 1273–1283. 10.1007/s10295-013-1323-1 PubMed DOI PMC
Lazar Z., Walczak E., Robak M. (2011). Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC+ transformants. Bioresour. Technol. 102 6982–6989. 10.1016/j.biortech.2011.04.032 PubMed DOI
Le Dall M.-T., Nicaud J.-M., Gaillardin C. (1994). Multi-copy integration in the yeast Yarrowia lipolytica. Curr. Genet. 26 38–44. 10.1007/BF00326302 PubMed DOI
Ledesma-Amaro R., Nicaud J.-M. (2016). Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 61 40–50. 10.1016/j.plipres.2015.12.001 PubMed DOI
Liénard M. A., Hagström ÅK., Lassance J.-M., Löfstedt C. (2010). Evolution of multi-component pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc. Natl. Acad. Sci. U.S.A. 107 10955–10960. 10.1073/pnas.1000823107 PubMed DOI PMC
Liu Y., Chen S., Chen J., Zhou J., Wang Y., Yang M., et al. (2016). High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Fact. 15:129. 10.1186/s12934-016-0524-5 PubMed DOI PMC
Matoušková P., Luxová A., Matoušková J., Jiroš P., Svatoš A., Valterová I., et al. (2008). A delta(9) desaturase from Bombus lucorum males: investigation of the biosynthetic pathway of marking pheromones. Chembiochem 9 2534–2541. 10.1002/cbic.200800374 PubMed DOI
Matsumoto S. (2010). Molecular mechanisms underlying sex pheromone production in moths. Biosci. Biotechnol. Biochem. 74 223–231. 10.1271/bbb.90756 PubMed DOI
McNaught A. D., Wilkinson A. (1997). IUPAC. Compendium of Chemical Terminology, 2 Edn Oxford: Blackwell Scientific Publications; 10.1351/goldbook DOI
Miller K. K., Alper H. S. (2019). Yarrowia lipolytica: more than an oleaginous workhorse. Appl. Microbiol. Biotechnol. 103 9251–9262. 10.1007/s00253-019-10200-x PubMed DOI
Mitchell E. R., McLaughlin J. R. (1982). Suppression of mating and oviposition by fall armyworm and mating by corn earworm in corn, using the air permeation technique. J. Econom. Entomol. 75 270–274. 10.1093/jee/75.2.270 DOI
Moto K., Suzuki M. G., Hull J. J., Kurata R., Takahashi S., Yamamoto M., et al. (2004). Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc. Natl. Acad. Sci. U.S.A. 101 8631–8636. 10.1073/PNAS.0402056101 PubMed DOI PMC
Moto K., Yoshiga T., Yamamoto M., Takahashi S., Okano K., Ando T., et al. (2003). Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 100 9156–9161. 10.1073/pnas.1531993100 PubMed DOI PMC
Petkevicius K., Löfstedt C. h, Borodina I. (2020). Insect sex pheromone production in yeasts and plants. Curr. Onin. Biotechnol. 65 259–267. 10.1016/j.copbio.2020.07.011 PubMed DOI
Querol A., Barrio E., Ramon D. (1992). A comparative study of different methods of yeast strain characterization. Syst. Appl. Microbiol. 15 439–446. 10.1016/S0723-2020(11)80219-5 DOI
Rutter C. D., Rao C. V. (2016). Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab. Eng. 38 139–147. 10.1016/j.ymben.2016.07.011 PubMed DOI
Sambrook J., Russell D. W. (2001). Molecular Cloning: A Laboratorymanual, 3 Edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Shah J., Arslan E., Cirucci J., O’Brien J., Moss D. (2016). Comparison of oleo− vs petro−sourcing of fatty alcohols via cradle−to−gate life cycle assessment. J. Surfact. Deterg. 19 1333–1351. 10.1007/s11743-016-1867-y PubMed DOI PMC
Tai M., Stephanopoulos G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15 1–9. 10.1016/j.ymben.2012.08.007 PubMed DOI
Tillman J. A., Seybold S. J., Jurenka R. A., Blomquist G. J. (1999). Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29 481–514. 10.1016/s0965-1748(99)00016-8 PubMed DOI
Tittiger C., Blomquist G. J. (2017). Pheromone biosynthesis in bark beetles. Curr. Opin. Insect Sci. 24 68–74. 10.1016/j.cois.2017.09.005 PubMed DOI
Tupec M., Buček A., Janoušek V., Vogel H., Prchalová D., Kindl J., et al. (2019). Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera. eLife 8:e39231. 10.7554/eLife.39231 PubMed DOI PMC
Tupec M., Buček A., Valterová I., Pichová I. (2017). Biotechnological potential of insect fatty acid-modifying enzymes. Zeitschr. Naturfors. C 72 387–403. 10.1515/znc-2017-0031 PubMed DOI
Wang G., Xiong X., Ghogare R., Wang P., Meng Y., Chen S. (2016). Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnol. Biof. 9:107. 10.1186/s13068-016-0512-3 PubMed DOI PMC
Wang W., Wei H., Knoshaug E., Van Wychen S., Xu Q., Himmel M. E., et al. (2016). Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnol. Biof. 9:227. 10.1186/s13068-016-0647-2 PubMed DOI PMC
Žáček P., Prchalová-Horòáková D., Tykva R., Kindl J., Vogel H., Svatoš A., et al. (2013). De novo biosynthesis of sexual pheromone in the labial gland of bumblebee males. Chembiochem 14 361–371. 10.1002/cbic.201200684 PubMed DOI