Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27117956
PubMed Central
PMC4846995
DOI
10.1038/srep24989
PII: srep24989
Knihovny.cz E-zdroje
- MeSH
- akční potenciály * MeSH
- Droseraceae fyziologie MeSH
- hluchavkotvaré fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed.
CNR National Institute of Optics L go E Fermi 6 50125 Florence Italy
LINV Department of Agrifood Production and Environmental Sciences Italy
Zobrazit více v PubMed
Raven J. A. Energetics and Transport in Aquatic Plants. MBL Lectures in Biology, Vol. 4, 587 pp. (Alan R. Liss , 1984).
Fromm J. & Lautner S. Electrical signals and their physiological significance in plants. Plant Cell Environm 30, 249–257 (2007). PubMed
Pavlovič A., Slováková L., Pandolfi C. & Mancuso S. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus fly trap (Dionaea muscipula Ellis). J Exp Bot 62, 1991–2000 (2011). PubMed PMC
Davies E. New functions for electrical signals in plants. New Phytol 161, 607–610 (2004). PubMed
Felle H. & Zimmermann M. R. Systemic signalling in barley through action potentials. Planta 226, 203–214 (2007). PubMed
Pickard B. G. Action potential in higher plants. Bot Rev 39, 172–201 (1973).
Wildon D. C. et al.. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360, 62–65 (1992).
Favre N. et al.. Action potentials elicited in the liverwort Conocephalum conicum (Hepaticae) with different stimuli. Arch Sci 52, 175–185 (1999).
Beilby M. Action potential in charophytes. Int Rev Cytol 257, 43–82 (2007). PubMed
Mancuso S. Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26, 55–61 (1999).
Shimmen T. Involvement of receptor potentials and action potentials in mechano-perception in plants. Aust J Plant Physiol 28, 567–576 (2001).
Williams S. E. & Pickard B. G. The role of action potentials in the control of capture movements of Drosera and Dionaea, chap. Plant Growth Substances, 470–480 (Springer-Verlag, 1979).
Iijima T. & Sibaoka T. Propagation of action potential over the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 23, 679–688 (1982).
Iijima T. & Sibaoka T. Membrane potentials in excitable cells of Aldrovanda vesiculosa trap-lobes. Plant Cell Physiol 26, 1–13 (1985).
Juniper B. E., Robins R. J. & Joel D. M. The Carnivorous Plants, 353 pp (Academic Press, 1989).
Sibaoka T. Rapid plant movements triggered by action potentials. Bot Mag 104, 73–95 (1991).
Volkov A. G., Adesina T. & Jovanov E. Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 3, 139–145 (2007). PubMed PMC
Król E., Dziubinska H., Stolarz M. & Trebacz K. Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biol Plant 50, 411–416 (2006).
Muravnik L. E., Vassilyev A. E. & Potapova Y. Y. Ultrastructural aspects of digestive gland functioning in Aldrovanda vesiculosa. Russ J Plant Physiol 42, 1–8 (1995).
Taylor P. The genus Utricularia: A Taxonomic Monograph, 721 pp. (Kew Bulletin, Additional Series, XIV, 1989).
Adamec L. The smallest but fastest: Ecophysiological characteristics of traps of aquatic carnivorous Utricularia. Plant Signal Behav 6, 640–646 (2011). PubMed PMC
Sydenham P. H. & Findlay G. P. The rapid movement of the bladder of Utricularia sp.–Aust J Biol Sci. 26, 1115–1126 (1973).
Singh A. K., Prabhakar S. P. & Sane S. P. The biomechanics of fast prey capture in aquatic bladderworts. Biol Lett 7, 547–550 (2011). PubMed PMC
Sasago A. & Sibaoka T. Water extrusion in the trap bladders of Utricularia vulgaris II. A possible mechanism of water outflow. Bot Mag 98, 113–124 (1985).
Vincent O., Roditchev I. & Marmottant P. Spontaneous firings of carnivorous aquatic Utricularia traps: Temporal patterns and mechanical oscillations. PLos One 6, e20205 (2011). PubMed PMC
Vincent O. et al.. Ultra-fast underwater suction traps. Proc R Soc B 278, 2909–2914 (2011). PubMed PMC
Adamec L. The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous Utricularia species. Aquat Bot 94, 44–49 (2011).
Adamec L. Functional characteristics of traps of aquatic carnivorous Utricularia species. Aquat Bot 95, 226–233 (2011). PubMed
Adamec L. 2012. Firing and resetting characteristics of carnivorous Utricularia reflexa traps: Physiological or only physical regulation of trap triggering? Phyton 52, 281–290 (2012).
Stett A. et al.. Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377, 486–495 (2003). PubMed
Hampson R. E., Simeral J. D. & Deadwyler S. A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610–614 (1999). PubMed
Madhavan R., Chao Z. C. & Potter S. M. Plasticity of recurring spatiotemporal activity patterns in cortical networks. Phys Biol 4, 181–193 (2007). PubMed PMC
Torborg C. L., Hansen H. A. & Feller M. B. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci 8, 72–78 (2004). PubMed PMC
Friedman P. A. Novel mapping techniques for cardiac electrophysiology. Heart 87, 575–582 (2002). PubMed PMC
Jimbo Y., Kasai N., Torimitsu K. & Tateno T. MEA-Based Spike Recording in Cultured Neuronal Networks, chap. Frontiers in Biochip Technology, 88–98 (Springer: Verlag, , 2006).
Masi E. et al.. Spatio-temporal dynamics of the electrical network activity in the root apex. PNAS, 106, 4048–4053 (2009). PubMed PMC
Rall W. Distribution of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys J 9, 1509–1541 (1969). PubMed PMC
Plonsey R. Action potential sources and their volume conductor fields. Proc IEEE 65, 601–611 (1977).
Masi E. et al.. The electrical network of maize root apex is gravity dependent. Sci Rep 5, doi: 10.1038/srep07730 (2015). PubMed DOI PMC
Boven K. H., Fejtl M., Möller A., Nisch W. & Stett A. On Micro-Electrode Array Revival, chap. Advances in Network Electrophysiology Using Multi-Electrode Arrays, 24–37 (Springer: Verlag, , 2006).
Egert U. Networks on chips-Monitoring the spatial and temporal dynamics of electrical activity in functional networks in brain slices and cardiac tissue, chap. BioMEMS, 309–350 (Springer: Verlag, , 2006).
Martìnez J. & Quian Quiroga R. Spike sorting, chap. Principles of Neural Coding, 61–74 (CRC Press, 2013).
Masi e. et al.. Electrical spiking in bacterial biofilms. J R Soc Interface 12, doi: 10.1098/rsif.2014.1036 (2014). PubMed DOI PMC
Lin Y., Chen C., Chen L., Zheng S. & Luo Q. The analysis of electrode-recording-horizon in multielectrode array (MEA). Conf Proc IEEE Eng Med Biol Soc 7, 7345–7348 (2005). PubMed
Adamec L. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytol. 155, 89–100 (2002). PubMed
Gallé A., Lautner S., Flexas J. & Fromm J. Environmental stimuli and physiological responses: The current view on electrical signalling. Environ Exp Bot 114, 15–21 (2015).
Volkov A. G., Coopwood K. J. & Markin V. S. Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channel blockers and uncouplers. Plant Sci 175, 642–649 (2008).