The Assembly Factor SDHAF2 Is Dispensable for Flavination of the Catalytic Subunit of Mitochondrial Complex II in Breast Cancer Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27587393
PubMed Central
PMC5076811
DOI
10.1074/jbc.c116.755017
PII: S0021-9258(20)35822-1
Knihovny.cz E-zdroje
- Klíčová slova
- SDH assembly factor, SDHA, SDHAF2, assembly factor, cancer biology, cancer cells, cell biology, complex II assembly, flavin adenine dinucleotide, flavination, flavinylation, mammal, mitochondria, mitochondrial complex II, mitochondrial respiratory chain complex, succinate dehydrogenase,
- MeSH
- flaviny MeSH
- genový knockdown MeSH
- lidé MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádory prsu genetika metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- respirační komplex II genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flaviny MeSH
- mitochondriální proteiny MeSH
- nádorové proteiny MeSH
- respirační komplex II MeSH
- SDHA protein, human MeSH Prohlížeč
- SDHAF2 protein, human MeSH Prohlížeč
Mitochondrial complex II or succinate dehydrogenase (SDH) is at the crossroads of oxidative phosphorylation and the tricarboxylic acid cycle. It has been shown that Sdh5 (SDHAF2/SDH5 in mammals) is required for flavination of the subunit Sdh1 (SDHA in human cells) in yeast. Here we demonstrate that in human breast cancer cells, SDHAF2/SDH5 is dispensable for SDHA flavination. In contrast to yeast, CRISPR-Cas9 nickase-mediated SDHAF2 KO breast cancer cells feature flavinated SDHA and retain fully assembled and functional complex II, as well as normal mitochondrial respiration. Our data show that SDHA flavination is independent of SDHAF2 in breast cancer cells, employing an alternative mechanism.
From the School of Medical Science Griffith University Southport 4222 Queensland Australia and
the Institute of Biotechnology Czech Academy of Sciences 252 50 Prague West Czech Republic
Zobrazit více v PubMed
Cecchini G. (2003) Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72, 77–109 PubMed
Sun F., Huo X., Zhai Y., Wang A., Xu J., Su D., Bartlam M., and Rao Z. (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 PubMed
Kluckova K., Sticha M., Cerny J., Mracek T., Dong L., Drahota Z., Gottlieb E., Neuzil J., and Rohlena J. (2015) Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis. 6, e1749. PubMed PMC
Dong L. F., Jameson V. J., Tilly D., Cerny J., Mahdavian E., Marín-Hernández A., Hernández-Esquivel L., Rodríguez-Enríquez S., Stursa J., Witting P. K., Stantic B., Rohlena J., Truksa J., Kluckova K., Dyason J. C., et al. (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728 PubMed PMC
Siebels I., and Dröse S. (2013) Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim. Biophys. Acta 1827, 1156–1164 PubMed
Quinlan C. L., Orr A. L., Perevoshchikova I. V., Treberg J. R., Ackrell B. A., and Brand M. D. (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287, 27255–27264 PubMed PMC
Ackrell B. A. (2000) Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett. 466, 1–5 PubMed
Grimm S. (2013) Respiratory chain complex II as general sensor for apoptosis. Biochim. Biophys. Acta 1827, 565–572 PubMed
Kluckova K., Bezawork-Geleta A., Rohlena J., Dong L., and Neuzil J. (2013) Mitochondrial complex II, a novel target for anti-cancer agents. Biochim. Biophys. Acta 1827, 552–564 PubMed
Miyadera H., Shiomi K., Ui H., Yamaguchi Y., Masuma R., Tomoda H., Miyoshi H., Osanai A., Kita K., and Omura S. (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc. Natl. Acad. Sci. U.S.A. 100, 473–477 PubMed PMC
Guzy R. D., Sharma B., Bell E., Chandel N. S., and Schumacker P. T. (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 28, 718–731 PubMed PMC
Bardella C., Pollard P. J., and Tomlinson I. (2011) SDH mutations in cancer. Biochim. Biophys. Acta 1807, 1432–1443 PubMed
Birch-Machin M. A., Taylor R. W., Cochran B., Ackrell B. A., and Turnbull D. M. (2000) Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann. Neurol. 48, 330–335 PubMed
Bourgeron T., Rustin P., Chretien D., Birch-Machin M., Bourgeois M., Viegas-Péquignot E., Munnich A., and Rötig A. (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11, 144–149 PubMed
Favier J., Amar L., and Gimenez-Roqueplo A. P. (2015) Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat. Rev. Endocrinol. 11, 101–111 PubMed
Parfait B., Chretien D., Rötig A., Marsac C., Munnich A., and Rustin P. (2000) Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum. Genet. 106, 236–243 PubMed
Hechtman J. F., Zehir A., Mitchell T., Borsu L., Singer S., Tap W., Oultache A., Ladanyi M., and Nafa K. (2015) Novel oncogene and tumor suppressor mutations in KIT and PDGFRA wild type gastrointestinal stromal tumors revealed by next generation sequencing. Genes Chromosomes Cancer 54, 177–184 PubMed PMC
Italiano A., Chen C. L., Sung Y. S., Singer S., DeMatteo R. P., LaQuaglia M. P., Besmer P., Socci N., and Antonescu C. R. (2012) SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer 12, 408. PubMed PMC
Acín-Pérez R., Carrascoso I., Baixauli F., Roche-Molina M., Latorre-Pellicer A., Fernández-Silva P., Mittelbrunn M., Sanchez-Madrid F., Pérez-Martos A., Lowell C. A., Manfredi G., and Enríquez J. A. (2014) ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 PubMed PMC
Nath A. K., Ryu J. H., Jin Y. N., Roberts L. D., Dejam A., Gerszten R. E., and Peterson R. T. (2015) PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10, 694–701 PubMed PMC
Van Vranken J. G., Na U., Winge D. R., and Rutter J. (2015) Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 50, 168–180 PubMed PMC
Ghezzi D., Goffrini P., Uziel G., Horvath R., Klopstock T., Lochmüller H., D'Adamo P., Gasparini P., Strom T. M., Prokisch H., Invernizzi F., Ferrero I., and Zeviani M. (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 41, 654–656 PubMed
Maio N., Ghezzi D., Verrigni D., Rizza T., Bertini E., Martinelli D., Zeviani M., Singh A., Carrozzo R., and Rouault T. A. (2016) Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB. Cell Metab. 23, 292–302 PubMed PMC
Rutter J., Winge D. R., and Schiffman J. D. (2010) Succinate dehydrogenase: assembly, regulation and role in human disease. Mitochondrion 10, 393–401 PubMed PMC
Hao H. X., Khalimonchuk O., Schraders M., Dephoure N., Bayley J. P., Kunst H., Devilee P., Cremers C. W., Schiffman J. D., Bentz B. G., Gygi S. P., Winge D. R., Kremer H., and Rutter J. (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 PubMed PMC
Bezawork-Geleta A., Brodie E. J., Dougan D. A., and Truscott K. N. (2015) LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci. Rep. 5, 17397. PubMed PMC
Eletsky A., Jeong M. Y., Kim H., Lee H. W., Xiao R., Pagliarini D. J., Prestegard J. H., Winge D. R., Montelione G. T., and Szyperski T. (2012) Solution NMR structure of yeast succinate dehydrogenase flavinylation factor Sdh5 reveals a putative Sdh1 binding site. Biochemistry 51, 8475–8477 PubMed PMC
Bezawork-Geleta A., Saiyed T., Dougan D. A., and Truscott K. N. (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J. 28, 1794–1804 PubMed
McNeil M. B., Clulow J. S., Wilf N. M., Salmond G. P., and Fineran P. C. (2012) SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria. J. Biol. Chem. 287, 18418–18428 PubMed PMC
McNeil M. B., and Fineran P. C. (2013) The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity. Biochemistry 52, 7628–7640 PubMed
Maklashina E., Rajagukguk S., Starbird C. A., McDonald W. H., Koganitsky A., Eisenbach M., Iverson T. M., and Cecchini G. (2016) Binding of the covalent flavin assembly factor to the flavoprotein subunit of complex II. J. Biol. Chem. 291, 2904–2916 PubMed PMC
Kounosu A. (2014) Analysis of covalent flavinylation using thermostable succinate dehydrogenase from Thermus thermophilus and Sulfolobus tokodaii lacking SdhE homologs. FEBS Lett. 588, 1058–1063 PubMed
Liu J., Gao L., Zhang H., Wang D., Wang M., Zhu J., Pang C., and Wang C. (2013) Succinate dehydrogenase 5 (SDH5) regulates glycogen synthase kinase 3β-β-catenin-mediated lung cancer metastasis. J. Biol. Chem. 288, 29965–29973 PubMed PMC
Huang S., Taylor N. L., Ströher E., Fenske R., and Millar A. H. (2013) Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis. Plant J. 73, 429–441 PubMed
Piruat J. I., Pintado C. O., Ortega-Sáenz P., Roche M., and López-Barneo J. (2004) The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol. Cell. Biol. 24, 10933–10940 PubMed PMC
Cardaci S., Zheng L., MacKay G., van den Broek N. J., MacKenzie E. D., Nixon C., Stevenson D., Tumanov S., Bulusu V., Kamphorst J. J., Vazquez A., Fleming S., Schiavi F., Kalna G., Blyth K., et al. (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell. Biol. 17, 1317–1326 PubMed PMC
Lussey-Lepoutre C., Hollinshead K. E., Ludwig C., Menara M., Morin A., Castro-Vega L. J., Parker S. J., Janin M., Martinelli C., Ottolenghi C., Metallo C., Gimenez-Roqueplo A. P., Favier J., and Tennant D. A. (2015) Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784. PubMed PMC
Zafreen L., Walker-Kopp N., Huang L. S., and Berry E. (2016) In-vitro, SDH5-dependent flavinylation of immobilized human respiratory complex II flavoprotein. Arch. Biochem. Biophys. 604, 47–56 PubMed
Tan A. S., Baty J. W., Dong L. F., Bezawork-Geleta A., Endaya B., Goodwin J., Bajzikova M., Kovarova J., Peterka M., Yan B., Pesdar E. A., Sobol M., Filimonenko A., Stuart S., Vondrusova M., et al. (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 PubMed
Vondrusova M., Bezawork-Geleta A., Sachaphibulkij K., Truksa J., and Neuzil J. (2015) The effect of mitochondrially targeted anticancer agents on mitochondrial (super)complexes. Methods Mol. Biol. 1265, 195–208 PubMed
Wittig I., Karas M., and Schägger H. (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol. Cell. Proteomics 6, 1215–1225 PubMed
Dong L. F., Low P., Dyason J. C., Wang X. F., Prochazka L., Witting P. K., Freeman R., Swettenham E., Valis K., Liu J., Zobalova R., Turanek J., Spitz D. R., Domann F. E., Scheffler I. E., et al. (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 PubMed PMC
Yan B., Stantic M., Zobalova R., Bezawork-Geleta A., Stapelberg M., Stursa J., Prokopova K., Dong L., and Neuzil J. (2015) Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 15, 401. PubMed PMC
Lemarie A., Huc L., Pazarentzos E., Mahul-Mellier A. L., and Grimm S. (2011) Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ. 18, 338–349 PubMed PMC
Bafunno V., Giancaspero T. A., Brizio C., Bufano D., Passarella S., Boles E., and Barile M. (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J. Biol. Chem. 279, 95–102 PubMed
Kluckova K., Dong L. F., Bajzikova M., Rohlena J., and Neuzil J. (2015) Evaluation of respiration of mitochondria in cancer cells exposed to mitochondria-targeted agents. Methods Mol. Biol. 1265, 181–194 PubMed
Pesta D., and Gnaiger E. (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 810, 25–58 PubMed
Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints
Mitochondrial Complex II: At the Crossroads