Differential impact of Paenibacillus infection on the microbiota of Varroa destructor and Apis mellifera
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39624306
PubMed Central
PMC11609247
DOI
10.1016/j.heliyon.2024.e39384
PII: S2405-8440(24)15415-1
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, Microbial networks, Microbiota analysis, Paenibacillus sp., Varroa destructor,
- Publikační typ
- časopisecké články MeSH
The Western honey bee (Apis mellifera) is a vital agricultural pollinator whose populations are threatened by the parasitic mite Varroa destructor and associated pathogens. While the impact of Paenibacillus species on honey bees, particularly Paenibacillus larvae causing American foulbrood, is documented, their effect on the microbiota of Varroa mites remains unclear. This study aimed to investigate the influence of Paenibacillus sp. on the bacterial communities of Varroa mites and adult honey bees. We hypothesized that Paenibacillus sp. would significantly alter the microbiota of Varroa mites but have minimal effect on that of adult honey bees. Utilizing 16S rRNA sequencing data from a previous study, we reanalyzed samples categorized into four groups based on Paenibacillus sp. infection load: highly infected and lowly infected honey bees (A. mellifera) and mites (V. destructor). Infection status was determined by Paenibacillus sp. read counts, with more than three reads indicating high infection. Microbial diversity was assessed using alpha and beta diversity metrics. Co-occurrence networks were constructed to visualize bacterial community assemblies, and network robustness was evaluated through node addition and removal tests. Keystone taxa were identified based on eigenvector centrality and relative abundance. Highly infected Varroa mites exhibited a significant reduction in alpha diversity and a markedly different bacterial community composition compared to lowly infected mites (p < 0.05). Their bacterial co-occurrence networks showed decreased connectivity and robustness, indicating a disruptive effect of Paenibacillus sp. In contrast, adult honey bees displayed no significant differences in alpha diversity or network structure between highly and lowly infected groups (p > 0.05), suggesting a resilient microbiota. Keystone taxa analysis revealed fewer central species in highly infected Varroa mites, potentially impacting network stability. High Paenibacillus sp. infection is associated with significant alterations in the microbiota of Varroa mites, disrupting bacterial communities and potentially affecting mite physiology. The microbiota of adult honey bees appears more robust against Paenibacillus sp. influence. These findings enhance our understanding of the complex interactions within the "honey bee-mite-microorganism" system and may inform future strategies for managing Varroa mite infestations and associated pathogens.
EA 7310 Laboratoire de Virologie Université de Corse Corte France
INRAE UR 0045 Laboratoire de Recherches Sur Le Développement de L'Élevage ' Corte France
School of Environmental Sciences University of Guelph 50 Stone Rd E Guelph N1H 2W1 Ontario Canada
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Khalifa S.A.M., Elshafiey E.H., Shetaia A.A., et al. Overview of bee pollination and its economic value for crop production. Insects. 2021;12:688. doi: 10.3390/insects12080688. PubMed DOI PMC
Francis R.M., Nielsen S.L., Kryger P. Varroa-Virus interaction in collapsing honey bee colonies. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057540. PubMed DOI PMC
Di Prisco G., Annoscia D., Margiotta M., et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. U.S.A. 2016;113:3203–3208. doi: 10.1073/pnas.1523515113. PubMed DOI PMC
Moran N.A. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 2015;10:22–28. doi: 10.1016/j.cois.2015.04.003. PubMed DOI PMC
Callegari M., Crotti E., Fusi M., et al. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes. 2021;7:42. doi: 10.1038/s41522-021-00212-9. PubMed DOI PMC
Martinson V.G., Moy J., Moran N.A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 2012;78:2830–2840. doi: 10.1128/AEM.07810-11. PubMed DOI PMC
Zhang Z., Mu X., Cao Q., et al. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 2022;13:2037. doi: 10.1038/s41467-022-29760-0. PubMed DOI PMC
Engel P., Martinson V.G., Moran N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U.S.A. 2012;109:11002–11007. doi: 10.1073/pnas.1202970109. PubMed DOI PMC
Kwong W.K., Mancenido A.L., Moran N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017;4 doi: 10.1098/rsos.170003. PubMed DOI PMC
Glinski Z., Jarozs J. Micro-organisms associated fortuitously with Varroa jacobsoni. Microbios. 1990;62:59–68.
Hubert J., Kamler M., Nesvorna M., et al. Comparison of Varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb. Ecol. 2016;72:448–459. doi: 10.1007/s00248-016-0776-y. PubMed DOI
Hubert J., Erban T., Kamler M., et al. Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J. Appl. Microbiol. 2015;119:640–654. doi: 10.1111/jam.12899. PubMed DOI
Sandionigi A., Vicario S., Prosdocimi E.M., et al. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing ‘ phyloh ’ as a novel phylogenetic diversity analysis tool. Mol. Ecol. Resour. 2015;15:697–710. doi: 10.1111/1755-0998.12341. PubMed DOI
Martin S.J., Highfield A.C., Brettell L., et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–1306. doi: 10.1126/science.1220941. PubMed DOI
Mouches C., Bové J.M., Albisetti J., et al. A spiroplasma of serogroup IV causes a May-disease-like disorder of honeybees in Southwestern France. Microb. Ecol. 1982;8:387–399. PubMed
Fogaça A.C., Sousa G., Pavanelo D.B., et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.628054. PubMed DOI PMC
Smutin D., Lebedev E., Selitskiy M., et al. Micro”bee”ota: honey bee normal microbiota as a part of superorganism. Microorganisms. 2022;10:2359. doi: 10.3390/microorganisms10122359. PubMed DOI PMC
Genersch E., Forsgren E., Pentikäinen J., et al. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006;56:501–511. doi: 10.1099/ijs.0.63928-0. PubMed DOI
Ebeling J., Knispel H., Hertlein G., et al. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 2016;100:7387–7395. doi: 10.1007/s00253-016-7716-0. PubMed DOI
Ory F., Dietemann V., Guisolan A., et al. Paenibacillus melissococcoides sp. nov., isolated from a honey bee colony affected by European foulbrood disease. Int. J. Syst. Evol. Microbiol. 2023;73 doi: 10.1099/ijsem.0.005829. PubMed DOI
Nakamura L.K. Paenibacillus apiarius sp. nov. Int. J. Syst. Bacteriol. 1996;46:688–693. doi: 10.1099/00207713-46-3-688. PubMed DOI
Yun J.-H., Lee J.-Y., Kim P.S., et al. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int. J. Syst. Evol. Microbiol. 2017;67:1918–1924. doi: 10.1099/ijsem.0.001887. PubMed DOI
Djordjevic S.P., Forbes W.A., Smith L.A., Hornitzky M.A. Genetic and biochemical diversity among isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies. Appl. Environ. Microbiol. 2000;66:1098–1106. doi: 10.1128/AEM.66.3.1098-1106.2000. PubMed DOI PMC
Bailey L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J. Insect Pathol. 1963;5:198–205.
Shida O., Takagi H., Kadowaki K., et al. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 1997;47:289–298. doi: 10.1099/00207713-47-2-289. PubMed DOI
Katznelson H. Bacillus apiarius , n. sp., an aerobic spore-forming organism isolated from honeybee larvae. J. Bacteriol. 1955;70:635–636. doi: 10.1128/jb.70.6.635-636.1955. PubMed DOI PMC
Spence R.P., Demchick P., Hornitzky M., et al. Surveillance of New Zealand apiaries for Paenibacillus alvei. N. Z. Entomol. 2013;36:82–86. doi: 10.1080/00779962.2012.759085. DOI
Alippi A.M., Albo G.N., Marcangeli J., et al. The mite Varroa jacobsoni does not transmit American foulbrood from infected to healthy colonies. Exp. Appl. Acarol. 1995;19:607–613. doi: 10.1007/BF00048815. DOI
De Rycke P.H. The possible role of Varroa destructor in the spreading of American foulbrood among apiaries. Exp. Appl. Acarol. 2002;27:313–318. doi: 10.1023/A:1023392912999. PubMed DOI
Bolyen E., Rideout J.R., Dillon M.R., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Ziemski M., Adamov A., Kim L., et al. Reproducible acquisition, management and meta-analysis of nucleotide sequence (meta)data using q2-fondue. Bioinformatics. 2022;38:5081–5091. doi: 10.1093/bioinformatics/btac639. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Bokulich N.A., Kaehler B.D., Rideout J.R., et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC
Yarza P., Yilmaz P., Pruesse E., et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014;12:635–645. doi: 10.1038/nrmicro3330. PubMed DOI
Pielou E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–144. doi: 10.1016/0022-5193(66)90013-0. DOI
DeSantis T.Z., Hugenholtz P., Larsen N., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC
Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Su X. Elucidating the beta-diversity of the microbiome: from global alignment to local alignment. mSystems. 2021;6 doi: 10.1128/mSystems.00363-21. 00363-21. PubMed DOI PMC
Bray J.R., Curtis J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Appl. 1957;27:325–349. doi: 10.2307/1942268. DOI
Oksanen J., Simpson G., Blanchet F.G., et al. 2022. Community Ecology Package ‘vegan’.
R Core Team . R Foundation for Statistical Computing; 2023. A Language and Environment for Statistical Computing.
RStudio Team . Integrated Development for R; 2020. RStudio.
Conway J.R., Lex A., Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC
Friedman J., Alm E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012;8 doi: 10.1371/journal.pcbi.1002687. PubMed DOI PMC
Bastian M., Heymann S., Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;3:361–362. doi: 10.1609/icwsm.v3i1.13937. DOI
Röttjers L., Vandeputte D., Raes J., Faust K. Null-model-based network comparison reveals core associations. ISME Commun. 2021;1:36. doi: 10.1038/s43705-021-00036-w. PubMed DOI PMC
Anaconda Software Distribution . Anaconda Inc; 2023. Anaconda Documentation.
Peschel S., Müller C.L., Von Mutius E., et al. NetCoMi: network construction and comparison for microbiome data in R. Briefings Bioinf. 2021;22 doi: 10.1093/bib/bbaa290. PubMed DOI PMC
Freitas S., Yang D., Kumar S., et al. Evaluating graph vulnerability and robustness using TIGER. 2020. DOI
Lhomme S. Analyse spatiale de la structure des réseaux techniques dans un contexte de risques. 2015. cybergeo. DOI
Mateos-Hernández L., Obregón D., Wu-Chuang A., et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.704621. PubMed DOI PMC
Fernandes A.D., Macklaim J.M., Linn T.G., et al. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One. 2013;8 doi: 10.1371/journal.pone.0067019. PubMed DOI PMC
Chazdon R.L., Chao A., Colwell R.K., et al. A novel statistical method for classifying habitat generalists and specialists. Ecology. 2011;92:1332–1343. doi: 10.1890/10-1345.1. PubMed DOI
Kešnerová L., Emery O., Troilo M., et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020;14:801–814. doi: 10.1038/s41396-019-0568-8. PubMed DOI PMC
Powell J.E., Martinson V.G., Urban-Mead K., Moran N.A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 2014;80:7378–7387. doi: 10.1128/AEM.01861-14. PubMed DOI PMC
Erban T., Ledvinka O., Kamler M., et al. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis. Sci. Rep. 2017;7:5084. doi: 10.1038/s41598-017-05076-8. PubMed DOI PMC
Santorelli L.A., Wilkinson T., Abdulmalik R., et al. Beehives possess their own distinct microbiomes. Environ. Microbiome. 2023;18:1. doi: 10.1186/s40793-023-00460-6. PubMed DOI PMC
Grady E.N., MacDonald J., Liu L., et al. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Factories. 2016;15:203. doi: 10.1186/s12934-016-0603-7. PubMed DOI PMC
Gonzalez E Garcia, Müller S., Hertlein G., et al. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. MicrobiologyOpen. 2014;3:642–656. doi: 10.1002/mbo3.195. PubMed DOI PMC
Hertlein G., Seiffert M., Gensel S., et al. Biological role of paenilarvins, Iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae. PLoS One. 2016;11 doi: 10.1371/journal.pone.0164656. PubMed DOI PMC
Jagadeesan Y., Athinarayanan S., Ayub S.B.M., Balaiah A. Assessment of synthesis machinery of two antimicrobial peptides from Paenibacillus alvei NP75. Probiotics Antimicrob. Proteins. 2020;12:39–47. doi: 10.1007/s12602-019-09541-w. PubMed DOI
Alkotaini B., Anuar N., Kadhum A.A.H., Sani A.A.A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J. Ind. Microbiol. Biotechnol. 2013;40:571–579. doi: 10.1007/s10295-013-1259-5. PubMed DOI PMC
Pajor M., Xiong Z.R., Worobo R.W., Szweda P. Paenibacillus alvei MP1 as a producer of the proteinaceous compound with activity against important human pathogens, including Staphylococcus aureus and Listeria monocytogenes. Pathogens. 2020;9:319. doi: 10.3390/pathogens9050319. PubMed DOI PMC
Bailey L. Honey bee pathology. Annu. Rev. Entomol. 1968;13:191–212. doi: 10.1146/annurev.en.13.010168.001203. DOI
Ludvigsen J., Rangberg A., Avershina E., et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 2015;30:235–244. doi: 10.1264/jsme2.ME15019. PubMed DOI PMC
Alvarado I., Phui A., Elekonich M.M., Abel-Santos E. Requirements for in vitro germination of Paenibacillus larvae spores. J. Bacteriol. 2013;195:1005–1011. doi: 10.1128/JB.01958-12. PubMed DOI PMC
Zhong J., Jasinskas A., Barbour A.G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One. 2007;2:e405. doi: 10.1371/journal.pone.0000405. PubMed DOI PMC
Zhu Y.-X., Zhang Y.-Y., Zhang X., Hong X.-Y. Antibiotics and temperature alter microbiome assembly and host fecundity in spider mites. Syst. Appl. Acarol. 2023 doi: 10.11158/saa.28.1.5. DOI