Differential impact of Paenibacillus infection on the microbiota of Varroa destructor and Apis mellifera

. 2024 Nov 30 ; 10 (22) : e39384. [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39624306
Odkazy

PubMed 39624306
PubMed Central PMC11609247
DOI 10.1016/j.heliyon.2024.e39384
PII: S2405-8440(24)15415-1
Knihovny.cz E-zdroje

The Western honey bee (Apis mellifera) is a vital agricultural pollinator whose populations are threatened by the parasitic mite Varroa destructor and associated pathogens. While the impact of Paenibacillus species on honey bees, particularly Paenibacillus larvae causing American foulbrood, is documented, their effect on the microbiota of Varroa mites remains unclear. This study aimed to investigate the influence of Paenibacillus sp. on the bacterial communities of Varroa mites and adult honey bees. We hypothesized that Paenibacillus sp. would significantly alter the microbiota of Varroa mites but have minimal effect on that of adult honey bees. Utilizing 16S rRNA sequencing data from a previous study, we reanalyzed samples categorized into four groups based on Paenibacillus sp. infection load: highly infected and lowly infected honey bees (A. mellifera) and mites (V. destructor). Infection status was determined by Paenibacillus sp. read counts, with more than three reads indicating high infection. Microbial diversity was assessed using alpha and beta diversity metrics. Co-occurrence networks were constructed to visualize bacterial community assemblies, and network robustness was evaluated through node addition and removal tests. Keystone taxa were identified based on eigenvector centrality and relative abundance. Highly infected Varroa mites exhibited a significant reduction in alpha diversity and a markedly different bacterial community composition compared to lowly infected mites (p < 0.05). Their bacterial co-occurrence networks showed decreased connectivity and robustness, indicating a disruptive effect of Paenibacillus sp. In contrast, adult honey bees displayed no significant differences in alpha diversity or network structure between highly and lowly infected groups (p > 0.05), suggesting a resilient microbiota. Keystone taxa analysis revealed fewer central species in highly infected Varroa mites, potentially impacting network stability. High Paenibacillus sp. infection is associated with significant alterations in the microbiota of Varroa mites, disrupting bacterial communities and potentially affecting mite physiology. The microbiota of adult honey bees appears more robust against Paenibacillus sp. influence. These findings enhance our understanding of the complex interactions within the "honey bee-mite-microorganism" system and may inform future strategies for managing Varroa mite infestations and associated pathogens.

Zobrazit více v PubMed

Khalifa S.A.M., Elshafiey E.H., Shetaia A.A., et al. Overview of bee pollination and its economic value for crop production. Insects. 2021;12:688. doi: 10.3390/insects12080688. PubMed DOI PMC

Francis R.M., Nielsen S.L., Kryger P. Varroa-Virus interaction in collapsing honey bee colonies. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057540. PubMed DOI PMC

Di Prisco G., Annoscia D., Margiotta M., et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. U.S.A. 2016;113:3203–3208. doi: 10.1073/pnas.1523515113. PubMed DOI PMC

Moran N.A. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 2015;10:22–28. doi: 10.1016/j.cois.2015.04.003. PubMed DOI PMC

Callegari M., Crotti E., Fusi M., et al. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes. 2021;7:42. doi: 10.1038/s41522-021-00212-9. PubMed DOI PMC

Martinson V.G., Moy J., Moran N.A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 2012;78:2830–2840. doi: 10.1128/AEM.07810-11. PubMed DOI PMC

Zhang Z., Mu X., Cao Q., et al. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 2022;13:2037. doi: 10.1038/s41467-022-29760-0. PubMed DOI PMC

Engel P., Martinson V.G., Moran N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U.S.A. 2012;109:11002–11007. doi: 10.1073/pnas.1202970109. PubMed DOI PMC

Kwong W.K., Mancenido A.L., Moran N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017;4 doi: 10.1098/rsos.170003. PubMed DOI PMC

Glinski Z., Jarozs J. Micro-organisms associated fortuitously with Varroa jacobsoni. Microbios. 1990;62:59–68.

Hubert J., Kamler M., Nesvorna M., et al. Comparison of Varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb. Ecol. 2016;72:448–459. doi: 10.1007/s00248-016-0776-y. PubMed DOI

Hubert J., Erban T., Kamler M., et al. Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J. Appl. Microbiol. 2015;119:640–654. doi: 10.1111/jam.12899. PubMed DOI

Sandionigi A., Vicario S., Prosdocimi E.M., et al. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing ‘ phyloh ’ as a novel phylogenetic diversity analysis tool. Mol. Ecol. Resour. 2015;15:697–710. doi: 10.1111/1755-0998.12341. PubMed DOI

Martin S.J., Highfield A.C., Brettell L., et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–1306. doi: 10.1126/science.1220941. PubMed DOI

Mouches C., Bové J.M., Albisetti J., et al. A spiroplasma of serogroup IV causes a May-disease-like disorder of honeybees in Southwestern France. Microb. Ecol. 1982;8:387–399. PubMed

Fogaça A.C., Sousa G., Pavanelo D.B., et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.628054. PubMed DOI PMC

Smutin D., Lebedev E., Selitskiy M., et al. Micro”bee”ota: honey bee normal microbiota as a part of superorganism. Microorganisms. 2022;10:2359. doi: 10.3390/microorganisms10122359. PubMed DOI PMC

Genersch E., Forsgren E., Pentikäinen J., et al. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006;56:501–511. doi: 10.1099/ijs.0.63928-0. PubMed DOI

Ebeling J., Knispel H., Hertlein G., et al. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 2016;100:7387–7395. doi: 10.1007/s00253-016-7716-0. PubMed DOI

Ory F., Dietemann V., Guisolan A., et al. Paenibacillus melissococcoides sp. nov., isolated from a honey bee colony affected by European foulbrood disease. Int. J. Syst. Evol. Microbiol. 2023;73 doi: 10.1099/ijsem.0.005829. PubMed DOI

Nakamura L.K. Paenibacillus apiarius sp. nov. Int. J. Syst. Bacteriol. 1996;46:688–693. doi: 10.1099/00207713-46-3-688. PubMed DOI

Yun J.-H., Lee J.-Y., Kim P.S., et al. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int. J. Syst. Evol. Microbiol. 2017;67:1918–1924. doi: 10.1099/ijsem.0.001887. PubMed DOI

Djordjevic S.P., Forbes W.A., Smith L.A., Hornitzky M.A. Genetic and biochemical diversity among isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies. Appl. Environ. Microbiol. 2000;66:1098–1106. doi: 10.1128/AEM.66.3.1098-1106.2000. PubMed DOI PMC

Bailey L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J. Insect Pathol. 1963;5:198–205.

Shida O., Takagi H., Kadowaki K., et al. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 1997;47:289–298. doi: 10.1099/00207713-47-2-289. PubMed DOI

Katznelson H. Bacillus apiarius , n. sp., an aerobic spore-forming organism isolated from honeybee larvae. J. Bacteriol. 1955;70:635–636. doi: 10.1128/jb.70.6.635-636.1955. PubMed DOI PMC

Spence R.P., Demchick P., Hornitzky M., et al. Surveillance of New Zealand apiaries for Paenibacillus alvei. N. Z. Entomol. 2013;36:82–86. doi: 10.1080/00779962.2012.759085. DOI

Alippi A.M., Albo G.N., Marcangeli J., et al. The mite Varroa jacobsoni does not transmit American foulbrood from infected to healthy colonies. Exp. Appl. Acarol. 1995;19:607–613. doi: 10.1007/BF00048815. DOI

De Rycke P.H. The possible role of Varroa destructor in the spreading of American foulbrood among apiaries. Exp. Appl. Acarol. 2002;27:313–318. doi: 10.1023/A:1023392912999. PubMed DOI

Bolyen E., Rideout J.R., Dillon M.R., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

Ziemski M., Adamov A., Kim L., et al. Reproducible acquisition, management and meta-analysis of nucleotide sequence (meta)data using q2-fondue. Bioinformatics. 2022;38:5081–5091. doi: 10.1093/bioinformatics/btac639. PubMed DOI PMC

Callahan B.J., McMurdie P.J., Rosen M.J., et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Bokulich N.A., Kaehler B.D., Rideout J.R., et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC

Yarza P., Yilmaz P., Pruesse E., et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014;12:635–645. doi: 10.1038/nrmicro3330. PubMed DOI

Pielou E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–144. doi: 10.1016/0022-5193(66)90013-0. DOI

DeSantis T.Z., Hugenholtz P., Larsen N., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC

Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Su X. Elucidating the beta-diversity of the microbiome: from global alignment to local alignment. mSystems. 2021;6 doi: 10.1128/mSystems.00363-21. 00363-21. PubMed DOI PMC

Bray J.R., Curtis J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Appl. 1957;27:325–349. doi: 10.2307/1942268. DOI

Oksanen J., Simpson G., Blanchet F.G., et al. 2022. Community Ecology Package ‘vegan’.

R Core Team . R Foundation for Statistical Computing; 2023. A Language and Environment for Statistical Computing.

RStudio Team . Integrated Development for R; 2020. RStudio.

Conway J.R., Lex A., Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC

Friedman J., Alm E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012;8 doi: 10.1371/journal.pcbi.1002687. PubMed DOI PMC

Bastian M., Heymann S., Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;3:361–362. doi: 10.1609/icwsm.v3i1.13937. DOI

Röttjers L., Vandeputte D., Raes J., Faust K. Null-model-based network comparison reveals core associations. ISME Commun. 2021;1:36. doi: 10.1038/s43705-021-00036-w. PubMed DOI PMC

Anaconda Software Distribution . Anaconda Inc; 2023. Anaconda Documentation.

Peschel S., Müller C.L., Von Mutius E., et al. NetCoMi: network construction and comparison for microbiome data in R. Briefings Bioinf. 2021;22 doi: 10.1093/bib/bbaa290. PubMed DOI PMC

Freitas S., Yang D., Kumar S., et al. Evaluating graph vulnerability and robustness using TIGER. 2020. DOI

Lhomme S. Analyse spatiale de la structure des réseaux techniques dans un contexte de risques. 2015. cybergeo. DOI

Mateos-Hernández L., Obregón D., Wu-Chuang A., et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.704621. PubMed DOI PMC

Fernandes A.D., Macklaim J.M., Linn T.G., et al. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One. 2013;8 doi: 10.1371/journal.pone.0067019. PubMed DOI PMC

Chazdon R.L., Chao A., Colwell R.K., et al. A novel statistical method for classifying habitat generalists and specialists. Ecology. 2011;92:1332–1343. doi: 10.1890/10-1345.1. PubMed DOI

Kešnerová L., Emery O., Troilo M., et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020;14:801–814. doi: 10.1038/s41396-019-0568-8. PubMed DOI PMC

Powell J.E., Martinson V.G., Urban-Mead K., Moran N.A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 2014;80:7378–7387. doi: 10.1128/AEM.01861-14. PubMed DOI PMC

Erban T., Ledvinka O., Kamler M., et al. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis. Sci. Rep. 2017;7:5084. doi: 10.1038/s41598-017-05076-8. PubMed DOI PMC

Santorelli L.A., Wilkinson T., Abdulmalik R., et al. Beehives possess their own distinct microbiomes. Environ. Microbiome. 2023;18:1. doi: 10.1186/s40793-023-00460-6. PubMed DOI PMC

Grady E.N., MacDonald J., Liu L., et al. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Factories. 2016;15:203. doi: 10.1186/s12934-016-0603-7. PubMed DOI PMC

Gonzalez E Garcia, Müller S., Hertlein G., et al. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. MicrobiologyOpen. 2014;3:642–656. doi: 10.1002/mbo3.195. PubMed DOI PMC

Hertlein G., Seiffert M., Gensel S., et al. Biological role of paenilarvins, Iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae. PLoS One. 2016;11 doi: 10.1371/journal.pone.0164656. PubMed DOI PMC

Jagadeesan Y., Athinarayanan S., Ayub S.B.M., Balaiah A. Assessment of synthesis machinery of two antimicrobial peptides from Paenibacillus alvei NP75. Probiotics Antimicrob. Proteins. 2020;12:39–47. doi: 10.1007/s12602-019-09541-w. PubMed DOI

Alkotaini B., Anuar N., Kadhum A.A.H., Sani A.A.A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J. Ind. Microbiol. Biotechnol. 2013;40:571–579. doi: 10.1007/s10295-013-1259-5. PubMed DOI PMC

Pajor M., Xiong Z.R., Worobo R.W., Szweda P. Paenibacillus alvei MP1 as a producer of the proteinaceous compound with activity against important human pathogens, including Staphylococcus aureus and Listeria monocytogenes. Pathogens. 2020;9:319. doi: 10.3390/pathogens9050319. PubMed DOI PMC

Bailey L. Honey bee pathology. Annu. Rev. Entomol. 1968;13:191–212. doi: 10.1146/annurev.en.13.010168.001203. DOI

Ludvigsen J., Rangberg A., Avershina E., et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 2015;30:235–244. doi: 10.1264/jsme2.ME15019. PubMed DOI PMC

Alvarado I., Phui A., Elekonich M.M., Abel-Santos E. Requirements for in vitro germination of Paenibacillus larvae spores. J. Bacteriol. 2013;195:1005–1011. doi: 10.1128/JB.01958-12. PubMed DOI PMC

Zhong J., Jasinskas A., Barbour A.G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One. 2007;2:e405. doi: 10.1371/journal.pone.0000405. PubMed DOI PMC

Zhu Y.-X., Zhang Y.-Y., Zhang X., Hong X.-Y. Antibiotics and temperature alter microbiome assembly and host fecundity in spider mites. Syst. Appl. Acarol. 2023 doi: 10.11158/saa.28.1.5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace