Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28698604
PubMed Central
PMC5506040
DOI
10.1038/s41598-017-05076-8
PII: 10.1038/s41598-017-05076-8
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- biodiverzita MeSH
- diskriminační analýza MeSH
- kukla mikrobiologie MeSH
- mikrobiota * MeSH
- Paenibacillus larvae fyziologie MeSH
- včely mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Honeybee (Apis mellifera L.) workers act as passive vectors of Paenibacillus larvae spores, which cause the quarantine disease American foulbrood (AFB). We assessed the relative proportions of P. larvae within the honeybee microbiome using metabarcoding analysis of the 16 S rRNA gene. The microbiome was analyzed in workers outside of the AFB zone (control - AFB0), in workers from asymptomatic colonies in an AFB apiary (AFB1), and in workers from colonies exhibiting clinical AFB symptoms (AFB2). The microbiome was processed for the entire community and for a cut-off microbiome comprising pathogenic/environmental bacteria following the removal of core bacterial sequences; varroosis levels were considered in the statistical analysis. No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria. There was no significant difference in the relative abundance of P. larvae between the AFB1 and AFB0 colonies, but we did observe a 9-fold increase in P. larvae abundance in AFB2 relative to the abundance in AFB1. The relative sequence numbers of Citrobacter freundii and Hafnia alvei were higher in AFB2 and AFB1 than in AFB0, whereas Enterococcus faecalis, Klebsiella oxytoca, Spiroplasma melliferum and Morganella morganii were more abundant in AFB0 and AFB1 than in AFB2.
Bee Research Institute at Dol Maslovice Dol 94 Libcice nad Vltavou CZ 252 66 Czechia
Crop Research Institute Drnovska 507 73 Prague 6 Ruzyne CZ 161 06 Czechia
Czech Hydrometeorological Institute Na Sabatce 2050 17 Prague 412 CZ 143 06 Czechia
Zobrazit více v PubMed
OIE. Chapter 9.2. Infection of honey bees with Paenibacillus larvae (American foulbrood). In: OIE Terrestrial Animal Health Code, vol. 2 (OIE - World Organisation for Animal Health) http://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_paenibacillus_larvae.htm (2016).
Ash, C., Priest, F. G. & Collins, M. D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek64, 253–260 (1993/1994). PubMed
White, G. F. The bacteria of the apiary, with special reference to bee diseases. (Bureau of Entomology, U. S. Department of Agriculture, 1906).
Genersch E. American foulbrood in honeybees and its causative agent. Paenibacillus larvae. J. Invertebr. Pathol. 2010;103:S10–S19. doi: 10.1016/j.jip.2009.06.015. PubMed DOI
Hansen H, Brodsgaard CJ. Foulbrood diseases. Apiacta. 1999;34:69–83.
Lindstrom A, Fries I. Sampling of adult bees for detection of American foulbrood (Paenibacillus larvae subsp. larvae) spores in honey bee (Apis mellifera) colonies. J. Apic. Res. 2005;44:82–86. doi: 10.1080/00218839.2005.11101154. DOI
Gillard M, Charriere JD, Belloy L. Distribution of Paenibacillus larvae spores inside honey bee colonies and its relevance for diagnosis. J. Invertebr. Pathol. 2008;99:92–95. doi: 10.1016/j.jip.2008.05.010. PubMed DOI
Garrido-Bailon E, et al. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay. Microb. Biotechnol. 2013;6:731–739. PubMed PMC
Lindstrom A. Distribution of Paenibacillus larvae spores among adult honey bees (Apis mellifera) and the relationship with clinical symptoms of American foulbrood. Microb. Ecol. 2008;56:253–259. doi: 10.1007/s00248-007-9342-y. PubMed DOI
de Graaf DC, et al. Standard methods for American foulbrood research. J. Apic. Res. 2013;52:52.1.11. doi: 10.3896/IBRA.1.52.1.11. PubMed DOI PMC
Machova M. Resistance of Bacillus larvae in beeswax. Apidologie. 1993;24:25–31. doi: 10.1051/apido:19930103. DOI
Gochnauer TA, Corner J. Detection and identification of Bacillus larvae in a commercial sample of bee-collected pollen. J. Apic. Res. 1974;13:265–267. doi: 10.1080/00218839.1974.11099790. DOI
Moran NA. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 2015;10:22–28. doi: 10.1016/j.cois.2015.04.003. PubMed DOI PMC
Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA. 2011;108:19288–19292. doi: 10.1073/pnas.1110474108. PubMed DOI PMC
Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus) ISME J. 2014;8:2369–2379. doi: 10.1038/ismej.2014.68. PubMed DOI PMC
Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA. Erratum to “Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus) [ISME J. 8, 2369–2379 (2014)]”. ISME J. 2014;8:2550–2551. doi: 10.1038/ismej.2014.180. PubMed DOI PMC
Hubert J, et al. Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb. Ecol. 2017;73:685–698. doi: 10.1007/s00248-016-0869-7. PubMed DOI
Hubert J, et al. Comparison of Varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb. Ecol. 2016;72:448–459. doi: 10.1007/s00248-016-0776-y. PubMed DOI
Erban, T. et al. Bacterial community associated with honeybees Apis mellifera affected by European foulbrood. PeerJ (in review) (2017). PubMed PMC
Lindstrom A, Korpela S, Fries I. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J. Invertebr. Pathol. 2008;99:82–86. doi: 10.1016/j.jip.2008.06.010. PubMed DOI
Gende L, et al. Searching for an American foulbrood early detection threshold by the determination of Paenibacillus larvae spore load in worker honey bees. Bull. Insectol. 2011;64:229–233.
Fries I, Lindstrom A, Korpela S. Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera) Vet. Microbiol. 2006;114:269–274. doi: 10.1016/j.vetmic.2005.11.068. PubMed DOI
Peters M, Kilwinski J, Beringhoff A, Reckling D, Genersch E. American foulbrood of the honey bee: occurrence and distribution of different genotypes of Paenibacillus larvae in the administrative district of Arnsberg (North Rhine-Westphalia) J. Vet. Med. B. 2006;53:100–104. doi: 10.1111/j.1439-0450.2006.00920.x. PubMed DOI
Riessberger-Galle U, von der Ohe W, Crailsheim K. Adult honeybee’s resistance against Paenibacillus larvae larvae, the causative agent of the American foulbrood. J. Invertebr. Pathol. 2001;77:231–236. doi: 10.1006/jipa.2001.5032. PubMed DOI
Mill AC, et al. Clustering, persistence and control of a pollinator brood disease: epidemiology of American foulbrood. Environ. Microbiol. 2014;16:3753–3763. doi: 10.1111/1462-2920.12292. PubMed DOI
Pfeiffer KJ, Crailsheim K. Drifting of honeybees. Insect. Soc. 1998;45:151–167.
Shimanuki H, Knox DA. Bee health and international trade. Rev. sci. tech. 1997;16:172–176. doi: 10.20506/rst.16.1.1008. PubMed DOI
Morrissey BJ, et al. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ. Microbiol. 2015;17:1414–1424. doi: 10.1111/1462-2920.12625. PubMed DOI PMC
Hansen H, Rasmussen B. The investigation of honey from bee colonies for Bacillus larvae. Dan. J. Plant Soil Sci. 1986;90:81–86.
Alippi AM, Albo GN, Marcangeli J, Leniz D, Noriega A. The mite Varroa jacobsoni does not transmit American foulbrood from infected to healthy colonies. Exp. Appl. Acarol. 1995;19:607–613. doi: 10.1007/BF00048815. DOI
Lyapunov YE, Kuzyaev RZ, Khismatullin RG, Bezgodova OA. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology. 2008;77:373–379. doi: 10.1134/S0026261708030181. PubMed DOI
Tian B, Moran NA. Genome sequence of Hafnia alvei bta3_1, a bacterium with antimicrobial properties isolated from honey bee gut. Genome Announc. 2016;4:e00439–16. PubMed PMC
Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010;8:15–25. doi: 10.1038/nrmicro2259. PubMed DOI PMC
Hertlein G, et al. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One. 2014;9:e108272. doi: 10.1371/journal.pone.0108272. PubMed DOI PMC
Lane, D. J. 16S/23S rRNA sequencing. In: eds. Stackebrandt, E. & Goodfellow, M. Nucleic acid techniques in bacterial systematics. (John Wiley and Sons, 1991), p. 115–175.
Dobbelaere W, de Graaf DC, Peeters JE. Development of a fast and reliable diagnostic method for American foulbrood disease (Paenibacillus larvae subsp. larvae) using a 16S rRNA gene based PCR. Apidologie. 2001;32:363–370. doi: 10.1051/apido:2001136. DOI
Chiodini RJ, et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PLoS One. 2015;10:e0134382. doi: 10.1371/journal.pone.0134382. PubMed DOI PMC
Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Cole JR, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12:385. doi: 10.1186/1471-2105-12-385. PubMed DOI PMC
Engel P, et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio. 2016;7:e02164–02115. PubMed PMC
Engel P, et al. Standard methods for research on Apis mellifera gut symbionts. J. Apic. Res. 2013;52:UNSP 52.4.07. doi: 10.3896/IBRA.1.52.4.07. DOI
Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied linear statistical models, 5thedn. (McGraw-Hill Irwin, 2005).
Dray, S., Legendre, P. & Blanchet, G. packfor: Forward selection with permutation (Canoco p. 46). R-Forge, The R Project for Statistical Computinghttp://R-Forge.R-project.org/projects/sedar/ (2013).
Oksanen, J. et al. vegan: Community Ecology Package. CRAN - The Comprehensive R Archive Networkhttp://CRAN.R-project.org/package=vegan (2016).
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009;5:e1000352. doi: 10.1371/journal.pcbi.1000352. PubMed DOI PMC
Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood