Copper-PLLA-Based Biopolymer Wrinkle Structures for Enhanced Antibacterial Activity

. 2025 Aug 08 ; 17 (16) : . [epub] 20250808

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40871121

Grantová podpora
CZ.02.01.01/00/22_008/0004562 Ministry of Education, Youth and Sports

The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a novel antibacterial surface by combining the inherent antimicrobial properties of copper with an engineered surface topography on a biopolymer matrix. A copper-poly-L-lactic acid (Cu-PLLA) composite system was fabricated using sputtering deposition followed by controlled thermal treatment to induce wrinkle-like micro- and nanostructures on the surface. The surface morphology was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), confirming the formation of hierarchical wrinkle patterns. The chemical composition and distribution of copper were analyzed via energy-dispersive X-ray spectroscopy (EDS). Antibacterial performance was assessed against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus using standard colony count reduction assays. The Cu-PLLA wrinkled surfaces demonstrated significantly enhanced bactericidal activity compared with flat PLLA and copper-free controls, a finding attributed to a synergistic effect of mechanical membrane disruption and copper-mediated chemical toxicity. These findings suggest that biopolymer-metal hybrid surfaces with engineered topography offer a promising strategy for developing next-generation antibacterial materials suitable for biomedical and clinical use.

Zobrazit více v PubMed

Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. PubMed DOI

Haq I.U., Krukiewicz K. Antimicrobial approaches for medical implants coating to prevent implants associated infections: Insights to develop durable antimicrobial implants. Appl. Surf. Sci. Adv. 2023;18:100532. doi: 10.1016/j.apsadv.2023.100532. DOI

Lee S.H., Yoo S., Kim S.H., Kim Y.M., Han S.I., Lee H. Nature-inspired surface modification strategies for implantable devices. Mater. Today Bio. 2025;31:101615. doi: 10.1016/j.mtbio.2025.101615. PubMed DOI PMC

Yadav K., Sahu K.K., Sucheta S., Minz S., Raza W., Pradhan M. Microtopographic influence on bacterial biofilm development in habitat-like environments. J. Drug Deliv. Sci. Technol. B. 2024;101:106311. doi: 10.1016/j.jddst.2024.106311. DOI

Chen S., Wang Y., Yang L., Chu C., Cao S., Wang Z., Xue J., You Z. Biodegradable elastomers for biomedical applications. Prog. Polym. Sci. 2023;147:101763. doi: 10.1016/j.progpolymsci.2023.101763. DOI

Zhang S., Zhang H., Sun J., Javanmardi N., Li T., Jin F., He Y., Zhu G., Wang Y., Wang T., et al. A review of recent advances of piezoelectric poly-L-lactic acid for biomedical applications. Int. J. Biol. Macromol. 2024;276:133748. doi: 10.1016/j.ijbiomac.2024.133748. PubMed DOI

Slepička P., Neznalová K., Fajstavr D., Kasálková N.S., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Proc. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Neznalová K., Fajstavr D., Rimpelová S., Kasálková N.S., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI

Travnickova M., Kasalkova N.S., Sedlar A., Molitor M., Musilkova J., Slepicka P., Svorcik V., Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021;16:025016. doi: 10.1088/1748-605X/abaf97. PubMed DOI

Slepička P., Kasálková N.S., Musílková J., Bačáková L., Frýdlová B., Sajdl P., Kolská Z., Rebollar E., Švorčík V. PLLA honeycombs activated by plasma and high-energy excimer laser for stem cell support. Appl. Surf. Sci. Adv. 2025;25:100662. doi: 10.1016/j.apsadv.2024.100662. DOI

Chen C.-M., Yang S. Wrinkling instabilities in polymer films and their applications. Polym. Int. 2012;61:1041–1047. doi: 10.1002/pi.4223. DOI

Yoo P.J. Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electron. Mater. Lett. 2011;7:17–23. doi: 10.1007/s13391-011-0303-8. DOI

Bowden N., Brittain S., Evans A.G., Hutchinson J.W., Whitesides G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature. 1998;393:146–149. doi: 10.1038/30193. DOI

Chung J.Y., Nolte A.J., Stafford C.M. Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 2009;21:1358–1362. doi: 10.1002/adma.200803209. DOI

Efimenko K., Rackaitis M., Manias E., Vaziri A., Mahadevan L., Genzer J. Nested self-similar wrinkling patterns in skins. Nat. Mater. 2005;4:293–297. doi: 10.1038/nmat1342. PubMed DOI

Ohzono T., Shimomura M. Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir. 2005;21:7230–7237. doi: 10.1021/la0503449. PubMed DOI

Yoo P.J., Lee H.H. Morphological diagram for metal/polymer bilayer wrinkling:  Influence of thermomechanical properties of polymer layer. Macromolecules. 2005;38:2820–2831. doi: 10.1021/ma048452+. DOI

Shugurov A.R., Kozelskaya A.I., Panin A.V. Wrinkling of the metal–polymer bilayer: The effect of periodical distribution of stresses and strains. RSC Adv. 2014;4:7389–7395. doi: 10.1039/c3ra47196a. DOI

Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-L-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI

Slepička P., Juřík P., Kolská Z., Malinský P., Macková A., Michaljaničová I., Švorčík V. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing. Nanoscale Res. Lett. 2012;7:671. doi: 10.1186/1556-276X-7-671. PubMed DOI PMC

Hassan I.A., Parkin I.P., Nair S.P., Carmalt C.J. Antimicrobial activity of copper and copper(I) oxide thin films deposited via aerosol-assisted CVD. J. Mater. Chem. B. 2014;2:2855–2860. doi: 10.1039/C4TB00196F. PubMed DOI

Ivanova I.A., Daskalova D.S., Yordanova L.P., Pavlova E.L. Copper and copper nanoparticles applications and their role against infections: A minireview. Processes. 2024;12:352. doi: 10.3390/pr12020352. DOI

Crisan M.C., Teodora M., Lucian M. Copper nanoparticles: Synthesis, characterization, physiology, toxicity and antimicrobial applications. Appl. Sci. 2022;12:141. doi: 10.3390/app12010141. DOI

Salah I., Parkin I.P., Allan E. Copper as an antimicrobial agent: Recent advances. RSC Adv. 2021;11:18179–18186. doi: 10.1039/D1RA02149D. PubMed DOI PMC

Linda P.A., Thakar R., Abdul H.S. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019;32:e00125-18. doi: 10.1128/cmr.00125-18. PubMed DOI PMC

Govind V., Bharadwaj S., Sai Ganesh M.R., Vishnu J., Shankar K.V., Shankar B., Rajesh R. Antiviral properties of copper and its alloys to inactivate covid-19 virus: A review. BioMetals. 2021;34:1217–1235. doi: 10.1007/s10534-021-00339-4. PubMed DOI PMC

Li X., Wang Y., Yin C., Yin Z. Copper nanowires in recent electronic applications: Progress and perspectives. J. Mater. Chem. C. 2020;8:849–872. doi: 10.1039/C9TC04744A. DOI

Abhinav K.V., Rao R.V.K., Karthik P.S., Singh S.P. Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Adv. 2015;5:63985–64030. doi: 10.1039/C5RA08205F. DOI

Nguyen D.H.K., Bazaka O., Bazaka K., Crawford R.J., Ivanova E.P. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol. 2020;38:558–571. doi: 10.1016/j.tibtech.2019.12.004. PubMed DOI

Pellegrino L., Kriem L.S., Robles E.S.J., Cabral J.T. Microbial Response to Micrometer-Scale Multiaxial Wrinkled Surfaces. ACS Appl. Mater. Interfaces. 2022;14:31463–31473. doi: 10.1021/acsami.2c08768. PubMed DOI PMC

Khalifa M., Lammer H., Gadad M.S., Varsavas S.D., Weng Z. Recent advances on copper/polymer nanocomposites: Processing strategies, mechanisms, and antibacterial efficacy. Eur. Polym. J. 2025;223:113637. doi: 10.1016/j.eurpolymj.2024.113637. DOI

Manuela O., Antunes W., Mota S., Madureira-Carvalho Á., Dinis-Oliveira R.J., da Silva D.D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms. 2024;12:1920. doi: 10.3390/microorganisms12091920. PubMed DOI PMC

Godoy-Gallardo M., Eckhard U., Delgado L.M., de Roo Puente Y.J.D., Hoyos-Nogués M., Gil F.J., Perez R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021;6:4470–4490. doi: 10.1016/j.bioactmat.2021.04.033. PubMed DOI PMC

Smola-Dmochowska A., Lewicka K., Macyk A., Rychter P., Pamuła E., Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int. J. Mol. Sci. 2023;18:7473. doi: 10.3390/ijms24087473. PubMed DOI PMC

Li D., Chen F., Dong Z., Jia F., Wen R., Sun C., Yu Q. Electrospun PLA/ZnO composite films: Enhanced antibacterial properties and application in fresh chicken meat preservation. Food Packag. Shelf Life. 2025;49:101536. doi: 10.1016/j.fpsl.2025.101536. DOI

Zhu G., Wang J., Gao J., Lin X., Zhu Z. Simple preparation, big effect: Chitosan-based flame retardant towards simultaneous enhancement of flame retardancy, antibacterial, crystallization and mechanical properties of PLA. Int. J. Biol. Macromol. 2025;303:140668. doi: 10.1016/j.ijbiomac.2025.140668. PubMed DOI

Abrari H., Ahmadi T., Nekouie V., Dehaghani M.T., Amiri M., Razzaghi M., Bakhsheshi-Rad H.R. A study on combination of alkaline treatment and PLA/f-CNTs composite coating on corrosion, biocompatibility and antibacterial activity of Mg alloy. Mater. Today Commun. 2024;40:109867. doi: 10.1016/j.mtcomm.2024.109867. DOI

Zhao Y., Han Y., Zhang H., Hu B., Qu S., Miao C., Qin L., Song G. The investigation of the photocatalytic degradation and bio-antimicrobial properties based on the biomass carbon dots and the composite nanofiber membranes of biomass carbon dots and PLA. Diamond Rel. Mater. 2025;158:112612. doi: 10.1016/j.diamond.2025.112612. DOI

Lee H., Shin D.Y., Na Y., Han G., Kim J., Kim N., Bang S.J., Kang H.S., Oh S.K., Yoon C.B., et al. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. Biomater. Adv. 2023;152:213523. doi: 10.1016/j.bioadv.2023.213523. PubMed DOI

Iqbal N., Tan W., Zhang Q., Iqbal D., Hossen M.I., Dou G., Ning X., Ming J. PLA/AgNPs fiber aerogels and its investigation into their antibacterial properties. J. Mol. Struct. 2024;1317:139189. doi: 10.1016/j.molstruc.2024.139189. DOI

Romero L.M., Palacio D.A., Esquivel S., Sanhueza G.A.S., Montaño M., Rojas D., Jaramillo A.F., Medina C., Montalba C., Meléndrez M.F. Contact antibacterial and biocompatible polymeric, composite with copper zeolite filler and copper oxide, nanoparticles: A step towards new raw materials for the biomedical industry. Polymer. 2024;315:127795. doi: 10.1016/j.polymer.2024.127795. DOI

Liu C., Wang D., Li Y., Li H., He L., Wu M., Wei D., Pan H., Zhao Y., Zhang H. A new strategy for the preparation of polylactic acid composites with UV resistance, light conversion, and antibacterial properties. Int. J. Biol. Macromol. 2024;278:135013. doi: 10.1016/j.ijbiomac.2024.135013. PubMed DOI

Salgado C.D., Sepkowitz K.A., John J.F., Cantey J.R., Attaway H.H., Freeman K.D., Sharpe P.A., Michels H.T., Schmidt M.G. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control Hosp. Epidemiol. 2013;34:479–486. doi: 10.1086/670207. PubMed DOI

Vincent M., Duval R.E., Hartemann P., Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018;124:1032–1046. doi: 10.1111/jam.13681. PubMed DOI

Hasan J., Chatterjee K. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale. 2015;7:15568–15575. doi: 10.1039/C5NR04156B. PubMed DOI PMC

Malinský P., Slepička P., Hnatowicz V., Švorčík V. Early stages of growth of gold layers sputter deposited on glass and silicon substrates. Nanoscale Res. Lett. 2012;7:241–248. doi: 10.1186/1556-276X-7-241. PubMed DOI PMC

Li S.J., Wu K., Yuan H.Z., Zhang J.Y., Liu G., Sun J. Formation of wrinkled patterns in metal films deposited on elastic substrates: Tunability and wettability. Surf. Coat. Technol. 2019;362:35–43. doi: 10.1016/j.surfcoat.2019.01.088. DOI

Jung W.B., Cho K.M., Lee W.K., Odom T.W., Jung H.T. Universal method for creating hierarchical wrinkles on thin-film surfaces. ACS Appl. Mater. Interfaces. 2018;10:1347–1355. doi: 10.1021/acsami.7b14011. PubMed DOI

Wang J., Do-Quang M., Cannon J.J., Yue F., Suzuki Y., Amberg G., Shiomi J. Surface structure determines dynamic wetting. Sci. Rep. 2015;5:8474. doi: 10.1038/srep08474. PubMed DOI PMC

Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI

Murono T., Hongo K., Nakano K., Maezono R. Ab-initio-based interface modeling and statistical analysis for estimate of the water contact angle on a metallic Cu(111) surface. Surf. Interfaces. 2022;34:102342. doi: 10.1016/j.surfin.2022.102342. DOI

Reznickova A., Lacmanova V., Kalbacova M.H., Hausild P., Nohava J., Kolska Z., Kutova A., Slepicka P. As-deposited and dewetted Cu layers on plasma treated glass: Adhesion study and its effect on biological response. Appl. Surf. Sci. Adv. 2024;24:100639. doi: 10.1016/j.apsadv.2024.100639. DOI

Lößlein S.M., Merz R., Rodríguez-Martínez Y., Schäfer F., Grützmacher P.G., Horwat D., Kopnarski M., Mücklich F. Influence of chemistry and topography on the wettability of copper. J. Colloid Interface Sci. 2024;670:658–675. doi: 10.1016/j.jcis.2024.04.212. PubMed DOI

Zou Y., Ross N., Nawaj W., Borguet E. A Simplified Approach for Dynamic Contact Angle Measurements. J. Chem. Educ. 2024;101:3883–3890. doi: 10.1021/acs.jchemed.4c00146. DOI

van Rooijen W., Hashemi L., Boon M., Farajzadeh R., Hajibeygi H. Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage. Adv. Water Resour. 2022;164:104221. doi: 10.1016/j.advwatres.2022.104221. DOI

Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011;77:1541–1547. doi: 10.1128/AEM.02766-10. PubMed DOI PMC

Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI

Ma X., Zhou S., Xu X., Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry—A narrative review. Front. Surg. 2022;9:905892. doi: 10.3389/fsurg.2022.905892. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...