Copper-PLLA-Based Biopolymer Wrinkle Structures for Enhanced Antibacterial Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004562
Ministry of Education, Youth and Sports
PubMed
40871121
PubMed Central
PMC12389648
DOI
10.3390/polym17162173
PII: polym17162173
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, biopolymer, copper composites, poly-L-lactic acid (PLLA), surface morphology, wrinkle structure,
- Publikační typ
- časopisecké články MeSH
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a novel antibacterial surface by combining the inherent antimicrobial properties of copper with an engineered surface topography on a biopolymer matrix. A copper-poly-L-lactic acid (Cu-PLLA) composite system was fabricated using sputtering deposition followed by controlled thermal treatment to induce wrinkle-like micro- and nanostructures on the surface. The surface morphology was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), confirming the formation of hierarchical wrinkle patterns. The chemical composition and distribution of copper were analyzed via energy-dispersive X-ray spectroscopy (EDS). Antibacterial performance was assessed against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus using standard colony count reduction assays. The Cu-PLLA wrinkled surfaces demonstrated significantly enhanced bactericidal activity compared with flat PLLA and copper-free controls, a finding attributed to a synergistic effect of mechanical membrane disruption and copper-mediated chemical toxicity. These findings suggest that biopolymer-metal hybrid surfaces with engineered topography offer a promising strategy for developing next-generation antibacterial materials suitable for biomedical and clinical use.
Zobrazit více v PubMed
Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. PubMed DOI
Haq I.U., Krukiewicz K. Antimicrobial approaches for medical implants coating to prevent implants associated infections: Insights to develop durable antimicrobial implants. Appl. Surf. Sci. Adv. 2023;18:100532. doi: 10.1016/j.apsadv.2023.100532. DOI
Lee S.H., Yoo S., Kim S.H., Kim Y.M., Han S.I., Lee H. Nature-inspired surface modification strategies for implantable devices. Mater. Today Bio. 2025;31:101615. doi: 10.1016/j.mtbio.2025.101615. PubMed DOI PMC
Yadav K., Sahu K.K., Sucheta S., Minz S., Raza W., Pradhan M. Microtopographic influence on bacterial biofilm development in habitat-like environments. J. Drug Deliv. Sci. Technol. B. 2024;101:106311. doi: 10.1016/j.jddst.2024.106311. DOI
Chen S., Wang Y., Yang L., Chu C., Cao S., Wang Z., Xue J., You Z. Biodegradable elastomers for biomedical applications. Prog. Polym. Sci. 2023;147:101763. doi: 10.1016/j.progpolymsci.2023.101763. DOI
Zhang S., Zhang H., Sun J., Javanmardi N., Li T., Jin F., He Y., Zhu G., Wang Y., Wang T., et al. A review of recent advances of piezoelectric poly-L-lactic acid for biomedical applications. Int. J. Biol. Macromol. 2024;276:133748. doi: 10.1016/j.ijbiomac.2024.133748. PubMed DOI
Slepička P., Neznalová K., Fajstavr D., Kasálková N.S., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Proc. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Neznalová K., Fajstavr D., Rimpelová S., Kasálková N.S., Kolská Z., Švorčík V., Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym. Deg. Stab. 2020;181:109370. doi: 10.1016/j.polymdegradstab.2020.109370. DOI
Travnickova M., Kasalkova N.S., Sedlar A., Molitor M., Musilkova J., Slepicka P., Svorcik V., Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021;16:025016. doi: 10.1088/1748-605X/abaf97. PubMed DOI
Slepička P., Kasálková N.S., Musílková J., Bačáková L., Frýdlová B., Sajdl P., Kolská Z., Rebollar E., Švorčík V. PLLA honeycombs activated by plasma and high-energy excimer laser for stem cell support. Appl. Surf. Sci. Adv. 2025;25:100662. doi: 10.1016/j.apsadv.2024.100662. DOI
Chen C.-M., Yang S. Wrinkling instabilities in polymer films and their applications. Polym. Int. 2012;61:1041–1047. doi: 10.1002/pi.4223. DOI
Yoo P.J. Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electron. Mater. Lett. 2011;7:17–23. doi: 10.1007/s13391-011-0303-8. DOI
Bowden N., Brittain S., Evans A.G., Hutchinson J.W., Whitesides G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature. 1998;393:146–149. doi: 10.1038/30193. DOI
Chung J.Y., Nolte A.J., Stafford C.M. Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 2009;21:1358–1362. doi: 10.1002/adma.200803209. DOI
Efimenko K., Rackaitis M., Manias E., Vaziri A., Mahadevan L., Genzer J. Nested self-similar wrinkling patterns in skins. Nat. Mater. 2005;4:293–297. doi: 10.1038/nmat1342. PubMed DOI
Ohzono T., Shimomura M. Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir. 2005;21:7230–7237. doi: 10.1021/la0503449. PubMed DOI
Yoo P.J., Lee H.H. Morphological diagram for metal/polymer bilayer wrinkling: Influence of thermomechanical properties of polymer layer. Macromolecules. 2005;38:2820–2831. doi: 10.1021/ma048452+. DOI
Shugurov A.R., Kozelskaya A.I., Panin A.V. Wrinkling of the metal–polymer bilayer: The effect of periodical distribution of stresses and strains. RSC Adv. 2014;4:7389–7395. doi: 10.1039/c3ra47196a. DOI
Juřík P., Slepička P., Mistrík J., Janíček P., Rimpelová S., Kolská Z., Švorčík V. Oriented gold ripple-like structures on poly-L-lactic acid. Appl. Surf. Sci. 2014;321:503–510. doi: 10.1016/j.apsusc.2014.10.033. DOI
Slepička P., Juřík P., Kolská Z., Malinský P., Macková A., Michaljaničová I., Švorčík V. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing. Nanoscale Res. Lett. 2012;7:671. doi: 10.1186/1556-276X-7-671. PubMed DOI PMC
Hassan I.A., Parkin I.P., Nair S.P., Carmalt C.J. Antimicrobial activity of copper and copper(I) oxide thin films deposited via aerosol-assisted CVD. J. Mater. Chem. B. 2014;2:2855–2860. doi: 10.1039/C4TB00196F. PubMed DOI
Ivanova I.A., Daskalova D.S., Yordanova L.P., Pavlova E.L. Copper and copper nanoparticles applications and their role against infections: A minireview. Processes. 2024;12:352. doi: 10.3390/pr12020352. DOI
Crisan M.C., Teodora M., Lucian M. Copper nanoparticles: Synthesis, characterization, physiology, toxicity and antimicrobial applications. Appl. Sci. 2022;12:141. doi: 10.3390/app12010141. DOI
Salah I., Parkin I.P., Allan E. Copper as an antimicrobial agent: Recent advances. RSC Adv. 2021;11:18179–18186. doi: 10.1039/D1RA02149D. PubMed DOI PMC
Linda P.A., Thakar R., Abdul H.S. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019;32:e00125-18. doi: 10.1128/cmr.00125-18. PubMed DOI PMC
Govind V., Bharadwaj S., Sai Ganesh M.R., Vishnu J., Shankar K.V., Shankar B., Rajesh R. Antiviral properties of copper and its alloys to inactivate covid-19 virus: A review. BioMetals. 2021;34:1217–1235. doi: 10.1007/s10534-021-00339-4. PubMed DOI PMC
Li X., Wang Y., Yin C., Yin Z. Copper nanowires in recent electronic applications: Progress and perspectives. J. Mater. Chem. C. 2020;8:849–872. doi: 10.1039/C9TC04744A. DOI
Abhinav K.V., Rao R.V.K., Karthik P.S., Singh S.P. Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Adv. 2015;5:63985–64030. doi: 10.1039/C5RA08205F. DOI
Nguyen D.H.K., Bazaka O., Bazaka K., Crawford R.J., Ivanova E.P. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol. 2020;38:558–571. doi: 10.1016/j.tibtech.2019.12.004. PubMed DOI
Pellegrino L., Kriem L.S., Robles E.S.J., Cabral J.T. Microbial Response to Micrometer-Scale Multiaxial Wrinkled Surfaces. ACS Appl. Mater. Interfaces. 2022;14:31463–31473. doi: 10.1021/acsami.2c08768. PubMed DOI PMC
Khalifa M., Lammer H., Gadad M.S., Varsavas S.D., Weng Z. Recent advances on copper/polymer nanocomposites: Processing strategies, mechanisms, and antibacterial efficacy. Eur. Polym. J. 2025;223:113637. doi: 10.1016/j.eurpolymj.2024.113637. DOI
Manuela O., Antunes W., Mota S., Madureira-Carvalho Á., Dinis-Oliveira R.J., da Silva D.D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms. 2024;12:1920. doi: 10.3390/microorganisms12091920. PubMed DOI PMC
Godoy-Gallardo M., Eckhard U., Delgado L.M., de Roo Puente Y.J.D., Hoyos-Nogués M., Gil F.J., Perez R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021;6:4470–4490. doi: 10.1016/j.bioactmat.2021.04.033. PubMed DOI PMC
Smola-Dmochowska A., Lewicka K., Macyk A., Rychter P., Pamuła E., Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int. J. Mol. Sci. 2023;18:7473. doi: 10.3390/ijms24087473. PubMed DOI PMC
Li D., Chen F., Dong Z., Jia F., Wen R., Sun C., Yu Q. Electrospun PLA/ZnO composite films: Enhanced antibacterial properties and application in fresh chicken meat preservation. Food Packag. Shelf Life. 2025;49:101536. doi: 10.1016/j.fpsl.2025.101536. DOI
Zhu G., Wang J., Gao J., Lin X., Zhu Z. Simple preparation, big effect: Chitosan-based flame retardant towards simultaneous enhancement of flame retardancy, antibacterial, crystallization and mechanical properties of PLA. Int. J. Biol. Macromol. 2025;303:140668. doi: 10.1016/j.ijbiomac.2025.140668. PubMed DOI
Abrari H., Ahmadi T., Nekouie V., Dehaghani M.T., Amiri M., Razzaghi M., Bakhsheshi-Rad H.R. A study on combination of alkaline treatment and PLA/f-CNTs composite coating on corrosion, biocompatibility and antibacterial activity of Mg alloy. Mater. Today Commun. 2024;40:109867. doi: 10.1016/j.mtcomm.2024.109867. DOI
Zhao Y., Han Y., Zhang H., Hu B., Qu S., Miao C., Qin L., Song G. The investigation of the photocatalytic degradation and bio-antimicrobial properties based on the biomass carbon dots and the composite nanofiber membranes of biomass carbon dots and PLA. Diamond Rel. Mater. 2025;158:112612. doi: 10.1016/j.diamond.2025.112612. DOI
Lee H., Shin D.Y., Na Y., Han G., Kim J., Kim N., Bang S.J., Kang H.S., Oh S.K., Yoon C.B., et al. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. Biomater. Adv. 2023;152:213523. doi: 10.1016/j.bioadv.2023.213523. PubMed DOI
Iqbal N., Tan W., Zhang Q., Iqbal D., Hossen M.I., Dou G., Ning X., Ming J. PLA/AgNPs fiber aerogels and its investigation into their antibacterial properties. J. Mol. Struct. 2024;1317:139189. doi: 10.1016/j.molstruc.2024.139189. DOI
Romero L.M., Palacio D.A., Esquivel S., Sanhueza G.A.S., Montaño M., Rojas D., Jaramillo A.F., Medina C., Montalba C., Meléndrez M.F. Contact antibacterial and biocompatible polymeric, composite with copper zeolite filler and copper oxide, nanoparticles: A step towards new raw materials for the biomedical industry. Polymer. 2024;315:127795. doi: 10.1016/j.polymer.2024.127795. DOI
Liu C., Wang D., Li Y., Li H., He L., Wu M., Wei D., Pan H., Zhao Y., Zhang H. A new strategy for the preparation of polylactic acid composites with UV resistance, light conversion, and antibacterial properties. Int. J. Biol. Macromol. 2024;278:135013. doi: 10.1016/j.ijbiomac.2024.135013. PubMed DOI
Salgado C.D., Sepkowitz K.A., John J.F., Cantey J.R., Attaway H.H., Freeman K.D., Sharpe P.A., Michels H.T., Schmidt M.G. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control Hosp. Epidemiol. 2013;34:479–486. doi: 10.1086/670207. PubMed DOI
Vincent M., Duval R.E., Hartemann P., Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018;124:1032–1046. doi: 10.1111/jam.13681. PubMed DOI
Hasan J., Chatterjee K. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale. 2015;7:15568–15575. doi: 10.1039/C5NR04156B. PubMed DOI PMC
Malinský P., Slepička P., Hnatowicz V., Švorčík V. Early stages of growth of gold layers sputter deposited on glass and silicon substrates. Nanoscale Res. Lett. 2012;7:241–248. doi: 10.1186/1556-276X-7-241. PubMed DOI PMC
Li S.J., Wu K., Yuan H.Z., Zhang J.Y., Liu G., Sun J. Formation of wrinkled patterns in metal films deposited on elastic substrates: Tunability and wettability. Surf. Coat. Technol. 2019;362:35–43. doi: 10.1016/j.surfcoat.2019.01.088. DOI
Jung W.B., Cho K.M., Lee W.K., Odom T.W., Jung H.T. Universal method for creating hierarchical wrinkles on thin-film surfaces. ACS Appl. Mater. Interfaces. 2018;10:1347–1355. doi: 10.1021/acsami.7b14011. PubMed DOI
Wang J., Do-Quang M., Cannon J.J., Yue F., Suzuki Y., Amberg G., Shiomi J. Surface structure determines dynamic wetting. Sci. Rep. 2015;5:8474. doi: 10.1038/srep08474. PubMed DOI PMC
Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Murono T., Hongo K., Nakano K., Maezono R. Ab-initio-based interface modeling and statistical analysis for estimate of the water contact angle on a metallic Cu(111) surface. Surf. Interfaces. 2022;34:102342. doi: 10.1016/j.surfin.2022.102342. DOI
Reznickova A., Lacmanova V., Kalbacova M.H., Hausild P., Nohava J., Kolska Z., Kutova A., Slepicka P. As-deposited and dewetted Cu layers on plasma treated glass: Adhesion study and its effect on biological response. Appl. Surf. Sci. Adv. 2024;24:100639. doi: 10.1016/j.apsadv.2024.100639. DOI
Lößlein S.M., Merz R., Rodríguez-Martínez Y., Schäfer F., Grützmacher P.G., Horwat D., Kopnarski M., Mücklich F. Influence of chemistry and topography on the wettability of copper. J. Colloid Interface Sci. 2024;670:658–675. doi: 10.1016/j.jcis.2024.04.212. PubMed DOI
Zou Y., Ross N., Nawaj W., Borguet E. A Simplified Approach for Dynamic Contact Angle Measurements. J. Chem. Educ. 2024;101:3883–3890. doi: 10.1021/acs.jchemed.4c00146. DOI
van Rooijen W., Hashemi L., Boon M., Farajzadeh R., Hajibeygi H. Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage. Adv. Water Resour. 2022;164:104221. doi: 10.1016/j.advwatres.2022.104221. DOI
Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011;77:1541–1547. doi: 10.1128/AEM.02766-10. PubMed DOI PMC
Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Ma X., Zhou S., Xu X., Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry—A narrative review. Front. Surg. 2022;9:905892. doi: 10.3389/fsurg.2022.905892. PubMed DOI PMC