The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model

. 2015 Apr ; 93 (4) : 384-95. [epub] 20141125

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25420722

The initiation of T-cell receptor (TCR) signaling, based on the cobinding of TCR and CD4-Lck heterodimer to a peptide-major histocompatibility complex II on antigen presenting cells, represents a classical model of T-cell signaling. What is less clear however, is the mechanism which translates TCR engagement to the phosphorylation of immunoreceptor tyrosine-based activation motifs on CD3 chains and how this event is coupled to the delivery of Lck function. Recently proposed 'standby model of Lck' posits that resting T-cells contain an abundant pool of constitutively active Lck (pY394(Lck)) required for TCR triggering, and this amount, upon TCR engagement, remains constant. Here, we show that although maintenance of the limited pool of pY394(Lck) is necessary for the generation of TCR proximal signals in a time-restricted fashion, the total amount of this pool, ~2%, is much smaller than previously reported (~40%). We provide evidence that this dramatic discrepancy in the content of pY394(Lck)is likely the consequence of spontaneous phosphorylation of Lck that occurred after cell solubilization. Additional discrepancies can be accounted for by the sensitivity of different pY394(Lck)-specific antibodies and the type of detergents used. These data suggest that reagents and conditions used for the quantification of signaling parameters must be carefully validated and interpreted. Thus, the limited size of pY394(Lck) pool in primary T-cells invites a discussion regarding the adjustment of the quantitative parameters of the standby model of Lck and reevaluation of the mechanism by which this pool contributes to the generation of proximal TCR signaling.

Zobrazit více v PubMed

Nat Immunol. 2001 Oct;2(10):947-50 PubMed

Front Immunol. 2012 Jun 19;3:167 PubMed

Immunity. 2007 Jul;27(1):76-88 PubMed

Immunol Cell Biol. 1998 Feb;76(1):34-40 PubMed

Nature. 2012 Jul 5;487(7405):64-9 PubMed

Sci Signal. 2013 Feb 19;6(263):ra13 PubMed

Immunity. 2010 Jun 25;32(6):766-77 PubMed

Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14859-64 PubMed

J Immunol. 2000 Mar 15;164(6):2915-23 PubMed

J Exp Med. 2003 May 5;197(9):1221-7 PubMed

Cell Signal. 2011 Jan;23(1):249-58 PubMed

Nat Struct Mol Biol. 2014 Feb;21(2):133-42 PubMed

J Clin Invest. 2002 Jan;109(1):9-14 PubMed

Front Immunol. 2012 Sep 21;3:291 PubMed

Nature. 2002 Oct 24;419(6909):845-9 PubMed

Biochem J. 1994 Jan 1;297 ( Pt 1):163-73 PubMed

J Biol Chem. 1993 Mar 15;268(8):5886-93 PubMed

Nat Immunol. 2002 Mar;3(3):259-64 PubMed

J Immunol. 2004 Apr 1;172(7):4266-74 PubMed

Annu Rev Immunol. 2009;27:591-619 PubMed

Blood. 2013 May 23;121(21):4295-302 PubMed

J Biol Chem. 1994 Sep 23;269(38):23642-7 PubMed

J Biol Chem. 1996 Jan 12;271(2):695-701 PubMed

Nat Immunol. 2003 Feb;4(2):189-97 PubMed

Nat Rev Immunol. 2010 Jan;10(1):59-71 PubMed

Nat Rev Immunol. 2008 Sep;8(9):699-712 PubMed

Mol Cell Biol. 2004 Jul;24(13):5667-76 PubMed

Nat Rev Immunol. 2013 Apr;13(4):222-3 PubMed

Immunol Lett. 2012 Feb 29;142(1-2):64-74 PubMed

Semin Immunol. 2007 Aug;19(4):255-61 PubMed

J Exp Med. 1996 Apr 1;183(4):1707-18 PubMed

J Exp Med. 1998 Nov 2;188(9):1575-86 PubMed

Nat Immunol. 2014 Apr;15(4):384-92 PubMed

Biochem J. 2013 Sep 1;454(2):169-79 PubMed

Nat Immunol. 2014 Sep;15(9):790-7 PubMed

Trends Immunol. 2011 Jan;32(1):1-5 PubMed

Mol Immunol. 2004 Jul;41(6-7):645-56 PubMed

J Immunol. 2009 Feb 15;182(4):2160-7 PubMed

J Immunol. 2002 May 1;168(9):4480-7 PubMed

Curr Biol. 1997 May 1;7(5):R295-8 PubMed

Int Immunol. 1994 Oct;6(10):1621-7 PubMed

Front Immunol. 2012 Jun 12;3:155 PubMed

Nat Immunol. 2014 Sep;15(9):798-807 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...